
BOB

FusionLock

Smart Contract Audit

Mar 29, 2024



Overview
Introduction

Common Prefix was commissioned to perform a security audit on BOB’s FusionLock.sol

contract at commit hash afe34d57ff6ad61cd9593755b36c5250e53159f5.

The contract was accompanied by detailed documentation, and an extensive test suite was

provided.

Protocol Description

The FusionLock contract enables users to lock their tokens (ERC20 and native tokens) within

the contract and then bridge them to another chain.

This contract is intended for deployment on an L1 chain (Ethereum mainnet). After a certain

time, set by the contract owner, users can either bridge their tokens to L2 (BOB L2, based on the

Optimism stack) or reclaim them. The owner has control over various parameters, including the

list of tokens allowed for deposit, the withdrawal time (which can only be decreased), the

address of the bridge, and the corresponding L2 address for each L1 token address. Additionally,

the owner can pause deposits and bridging to L2. Hence, a level of trust is placed in the owner

to configure these parameters accurately. Regardless, after the withdrawal time elapses, the

users can always withdraw and reclaim their tokens.

We were also provided with a list of tokens, and we verified their compatibility with the Optimism

bridge.

1

https://github.com/bob-collective/fusion-lock/tree/afe34d57ff6ad61cd9593755b36c5250e53159f5
https://github.com/bob-collective/fusion-lock/tree/afe34d57ff6ad61cd9593755b36c5250e53159f5?tab=readme-ov-file#contract-requirements


Disclaimer

Note that this audit does not give any warranties on the bug-free status of the given smart

contracts, i.e. the evaluation result does not guarantee the nonexistence of any further findings

of security issues. This audit report is intended to be used for discussion purposes only.

Functional correctness should not rely on human inspection but be verified through thorough

testing. We always recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of the project.

Findings Severity Breakdown

The findings are classified under the following severity categories according to the impact and

the likelihood of an attack.

Level Description

Critical Logical errors or implementation bugs that are easily exploited and
maylead to any kind of loss of funds

High Logical errors or implementation bugs that are likely to be exploited and
may have disadvantageous economic impact or contract failure

Medium Issues that may break the intended contract logic or lead to DoS attacks

Low
Issues harder to exploit (exploitable with low probability), issues that lead
to poor contract performance, clumsy logic or seriously error-prone
implementation

Informational Advisory comments and recommendations that could help make the
codebase clearer, more readable and easier to maintain

2



Findings
Critical

No critical issues found.

High

No high issues found.

Medium

No medium issues found.

Low

LOW-1 Compatibility of the tokens with the Optimism bridge

Contract(s) FusionLock.sol

Status Resolved

Description

As part of this audit, we evaluated the compatibility of the list of ERC20 tokens provided to us by

the team with the Optimism bridge. Most of the tokens are expected to function seamlessly with

the bridge.

3

https://github.com/bob-collective/fusion-lock/tree/afe34d57ff6ad61cd9593755b36c5250e53159f5?tab=readme-ov-file#contract-requirements


However, we have some concerns regarding the Aave aTokens (aUSDT, aUSDC, aDAI, awBTC).

These tokens have a balance that expands, accounting for accrued interest. While we do not

anticipate any technical issues with moving these tokens from L1 to L2 or vice versa through the

bridge, it's important to note that as long as the aTokens remain locked in the L1-side bridge

contract, they will continue to accrue interest. Consequently, when a user attempts to withdraw

their initially deposited amount, they will be able to do so, but the accrued interest will remain

locked in the contract indefinitely. Therefore, from an economic standpoint, bridging aTokens

may not be advisable.

Additionally, part of the deposited aTokens will be permanently locked to the FusionLock

contract, corresponding to interest accrued as long as the user kept these tokens locked in the

contract.

Furthermore, we observed that some tokens on the list are not native to the Ethereum mainnet:

OP (the token of the Optimism L2), aBTC (BNB chain), SBTC, ALEX, and STX (Stacks L2),

therefore cannot be used in the FusionLock contract.

Alleviation

The team has informed us that they will not permit the deposit of aTokens and other tokens

mentioned above, which could face problems with the bridge. Additionally, they have introduced

a new feature at commit hash 455416c3184585790f8bdcb66336e47fd96efed5: not all tokens

will automatically utilize the standard bridge (bridgeProxyAddress), as the owner now has

the ability to assign a different bridge address for each token. This customization option for the

bridge may prove necessary for certain tokens.

LOW-2 No actions taken for tokens failing to be bridged

Contract(s) FusionLock.sol

Status Resolved

4

https://github.com/bob-collective/fusion-lock/commit/455416c3184585790f8bdcb66336e47fd96efed5


Description

In the case that the token on the L2 side of the bridge does not recognize the token on the L1

side as its pair token, for instance, if the FusionLock owner has incorrectly set the pairs, the

bridging process will fail, and the bridge will return the tokens to the sender on the original (L1)

chain. However, it's important to note that the sender in this scenario is the FusionLock

contract, not the user. Consequently, in this edge case, the returned tokens will be locked to the

FusionLock contract, since there is no functionality to withdraw them.

Recommendation

Adding logic to automatically handle this edge case would be excessive and would significantly

increase the complexity of the contract. As a mitigation, we suggest off-chain tracking of the

transactions and implementing a saveTokens function callable only by the owner to send back

the tokens to users that failed to be bridged. To ensure that the owner will only save the excess

tokens and not tokens deposited by users, the contract should also maintain a variable

totalDeposits for each token, which will change with each deposit and withdrawal. The

saveTokens function should only be callable in cases where the actual balance exceeds the

one accounted for by the variable. This function would also allow the owner to send back tokens

to the users who directly send them to the FusionLock contract, without using the

depositERC20 function.

Alleviation

The team has addressed the issue at commit hashes

6f5489e6a443d591c0d882eb5779d260bf39ce35 and

9af92bd48f01b1f5a8e068e1d7900be3f37674d0. The owner now has the capability to return

excess tokens (tokens which have been sent back to the contract by the bridge due to a failure

or tokens sent to the contract directly by accident) to the users.

5

https://github.com/ethereum-optimism/optimism/blob/3a62bccd6c5464891d0d6282264022d240d05b60/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L172
https://github.com/ethereum-optimism/optimism/blob/3a62bccd6c5464891d0d6282264022d240d05b60/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L172
https://github.com/bob-collective/fusion-lock/commit/6f5489e6a443d591c0d882eb5779d260bf39ce35
https://github.com/bob-collective/fusion-lock/commit/9af92bd48f01b1f5a8e068e1d7900be3f37674d0


Informational/Suggestions

INFO-1 Redundant check that ETH is allowed

Contract(s) FusionLock.sol

Status Resolved

Description

The native token (ETH in our case) is permitted for deposits in the constructor of the contract.

Therefore, whenever a user attempts to deposit native tokens (NaT) by calling depositETH(),

there is no need to check if this is allowed or not, as is currently done in the

isDepositAllowedmodifier.

Alleviation

The team addressed the issue at commit hash 5dced5f0330e953314b5406b5a9828f24caf9cab.

INFO-2 Consider using .call instead of .transfer

Contract(s) FusionLock.sol

Status Resolved

6

https://github.com/bob-collective/fusion-lock/commit/5dced5f0330e953314b5406b5a9828f24caf9cab


Description

In the withdrawSingleDepositToL1 function, native tokens are sent back to the user using

the .transfer method. This method forwards a fixed amount of gas (2300) and it used to be

considered a measure against reentrancy. However, this approach assumes constant gas costs,

which is not the case as gas costs are subject to change. Any contract using .transfer takes

a hard dependency on gas costs and could potentially break after a future gas costs update.

Additionally, the use of .transfer limits interactions with other protocols that may require multiple

actions or adjustments, and therefore higher costs, to accounting variables upon receiving

tokens from the FusionLock contract.

Recommendation

Since the contract already follows the checks-effects-interactions pattern (zeroing the user's

balance before sending them their NaT), therefore there is no reentrancy risk,we believe it is safe

to replace .transfer with .call.

Alleviation

The team addressed the issue at commit hash

ba0b987cf5b5828e8ac729199d7177268d8e1fe8.

INFO-3 Modifiers applied twice in pause() and unpause()

Contract(s) FusionLock.sol

Status Resolved

Description

7

https://github.com/bob-collective/fusion-lock/commit/ba0b987cf5b5828e8ac729199d7177268d8e1fe8


In the contract there is an external pause() function, callable only by the contract owner. This

function has the whenNotPaused modifier and calls the internal function _pause of the

Pausable.sol contract. But the _pause function has also the whenPaused modifier.

The same holds for unpause() and the whenPaused modifier.

Recommendation

We suggest removing the modifiers from the external functions to simplify the code and reduce

the gas costs.

Alleviation

The team fixed the issue at commit hash 0885622b0e55d4d5000e7a13f2373366340d93e6.

INFO-4 Use the local variable to avoid accessing storage twice

Contract(s) FusionLock.sol

Status Resolved

Description

In withdrawSingleDepositToL1 and withdrawSingleDepositToL2 the

deposits[msg.sender][token] is being read twice, first in the require and then to assign

its value to the transferAmount local variable.

require(deposits[msg.sender][token] != 0, "Withdrawal completed or token never
deposited");
uint256 transferAmount = deposits[msg.sender][token];

8

https://github.com/bob-collective/fusion-lock/commit/0885622b0e55d4d5000e7a13f2373366340d93e6


Recommendation

We suggest accessing it only once, store it in the local variable transferAmount and then use

this in the require:

uint256 transferAmount = deposits[msg.sender][token];
require(transferAmount != 0, "Withdrawal completed or token never deposited");

Alleviation

The team fixed the issue at commit hash dc7a8460ba0aa687c962561d337308d4e7873093.

9

https://github.com/bob-collective/fusion-lock/commit/dc7a8460ba0aa687c962561d337308d4e7873093


About Common Prefix

Common Prefix is a blockchain research, development, and consulting company consisting of a

small number of scientists and engineers specializing in many aspects of blockchain science.

We work with industry partners who are looking to advance the state-of-the-art in our field to

help them analyze and design simple but rigorous protocols from first principles, with provable

security in mind.

Our consulting and audits pertain to theoretical cryptographic protocol analyses as well as the

pragmatic auditing of implementations in both core consensus technologies and application

layer smart contracts.

10


