
Espresso Turbo-PLONK verifier and BN254
Audit

Shresth Agrawal1,2 Pyrros Chaidos1,3

Jakov Mitrovski1,2

1 Common Prefix
2 Technical University of Munich

3 University of Athens

May 22, 2024
Last update: September 2, 2024

1 Overview

1.1 Introduction

Espresso Systems commissioned Common Prefix to audit their Solidity
implementation of the Plonk verifier and its BN254 curve dependency.

Plonk [GWC19] is a state-of-the-art zero-knowledge proof system with
a universal, updateable setup and an efficient verifier. Owing to its high
efficiency and powerful arithmetization system, it is currently one of the
most popular proof systems. The implementation used is intended to ver-
ify proofs produced by the Jellyfish PLONK ZKP cryptographic library.
The codebase implements TurboPlonk, with 5 wires and additional gates
customized for embedded curve operations and efficient arithmetic hash-
ing. The codebase uses Yul and low-level Solidity to optimize the proof
verification’s gas cost.

Plonk requires a pairing-friendly group setting. For efficiency reasons,
the implementation uses the BN254 curve, which Ethereum and other
EVM chains have pre-compiled contracts for, making pairings and other
curve operations practical. The deployment will be executed on an EVM
chain, ensuring compatibility and leveraging the existing pre-compiled
contracts. The codebase includes a wrapper of the pre-compile operations
and additional helper functions for inversion, serialization, deserialization,
validity, and more.

The primary objectives of the audit were to assess security, adherence
to the relevant literature, performance optimizations, and code quality.

https://github.com/EspressoSystems/jellyfish

1.2 Audited Files

Audit start commits: [773cfae6, 4f2e93b]
Latest audited commits: [676053e, 5481965]

1. PlonkVerifier.sol
2. PolynomialEval.sol
3. Transcript.sol
4. BN254.sol
5. Utils.sol
6. IPlonkVerifier.sol

Supporting documentation:

1. Espresso’s Configurable Asset Privacy specification is referred to as
the specification document in the rest of this audit report.

1.3 Disclaimer

This audit does not give any warranties on the bug-free status of the given
code, i.e., the evaluation result does not guarantee the nonexistence of
any further findings of security issues. This audit report is intended to be
used for discussion purposes only. We always recommend proceeding with
several independent audits and a public bug bounty program to ensure
the security of the project.

The scope of the audit was limited exclusively to the Plonk verifica-
tion and BN254 smart contracts, with no examination conducted on its
associated dependencies. Furthermore, the audit does not encompass any
reference string generation functionality in terms of code or execution.
The reference string generation functionality involves creating the struc-
tured reference string (SRS), which is crucial for enabling both the prover
and verifier to function efficiently and securely within the protocol.

1.4 Executive Summary

The audit was based on the verifier algorithm presented in Section 8.3
of the PLONK paper [GWC19]. As per the specification document, we
augmented the verifier steps to extend to 5 wires and custom gates. The
extended verifier algorithm and the translation of the paper’s terms to
the codebase structures and variable names can be found in Section 2.4.

Overall, the code is of good quality and adheres to best practices. The
implementation is structured into modular functions that parallelize the

2

https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/
https://github.com/EspressoSystems/espresso-sequencer/tree/676053e0214641560a4150b6d933ee8d9007aec2/contracts/src/libraries/
https://github.com/EspressoSystems/solidity-bn254/tree/54819652976ed06e34c8863d3a6775884256ea05/src
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/Utils.sol
https://github.com/EspressoSystems/espresso-sequencer/blob/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/interfaces/IPlonkVerifier.sol
https://github.com/EspressoSystems/cap/blob/main/cap-specification.pdf

steps of the PLONK verifier. These functions are well documented and
reference the relevant sections of the paper.

The main findings relate to edge cases of functions, deviations from
the paper, and some operations that are curve-specific without being ex-
plicitly marked as such. The codebase seems to be based on some existing
off-chain implementation. Some of the operations, such as bytes manip-
ulation, memory expansion, etc., which are negligible off-chain, are gas-
expensive on-chain. The codebase could be refactored to optimize these
operations. We have also identified several lower-impact issues, including
possible optimizations, code simplifications, inconsistencies, and minor
deviations from best practices (namely, magic numbers and documenta-
tion lapses).

1.5 Findings Severity Breakdown

Our findings are classified under the following severity categories, accord-
ing to their impact and their likelihood of leading to an attack.

Level Description

High Logical errors or implementation bugs that are easily
exploited. In the case of contracts, such issues can lead
to any kind of loss of funds.

Medium Issues that may break the intended logic, are devia-
tions from the specification, or can lead to DoS at-
tacks.

Low Issues harder to exploit (exploitable with low proba-
bility), can lead to poor performance, clumsy logic, or
seriously error-prone implementation.

Informational Advisory comments and recommendations that could
help make the codebase clearer, more readable, and
easier to maintain.

3

2 Findings

2.1 High

H01: Handle evaluatePiPoly and evaluateLagrangeOne for the case
when ζ is a root of unity

Affected Code: PolynomialEval.sol (lines 145,115)
Summary: The current implementations of evaluatePiPoly and

evaluateLagrangeOne produce erroneous results when ζ is a root of unity.
Specifically, it always returns 0, whereas Li should be returning 1 when
ζ is ωi.

Suggestion:
• For evaluatePiPoly, first check if ζ is a root of unity. This can be
done by checking if the vanishing polynomial is 0 at ζ (this is
already checked in line 151). If it is, then return the respective
pi[i] such that ζ = ωi. Otherwise, proceed with the calculation as
is.

• For evaluateLagrangeOne, first check if ζ is a root of unity. This can
be done by checking if the vanishing polynomial is 0 at ζ (this is
already checked in line 120). Inside the if block, check if ζ is the
first root of unity, i.e., ζ = ω1 and return 1. Otherwise, return 0.
The rest of the code can remain as is.

Status: Resolved [aba35f1]

2.2 Medium

M01: Use addmod for _computeLinPolyConstantTerm

Affected Code: PlonkVerifier.sol (lines 305,310,315,320)
Summary: The lines referenced above use add instead of addmod. Such

calculations are implicitly performed modulo 2256, instead of modulo
the order of the scalar field, which is incorrect. In this particular in-
stantiation, due to the size of the BN254 scalar field, the calculations
will not overflow (i.e., for all previously reduced a and b, a+b < 2256),
and the addition will take place over the integers. Regardless, this be-
havior is specific to BN254 and not documented. Using the same code
on a different curve would produce erroneous results.

Suggestion: Switch to using addmod throughout, or, alternatively, add
appropriate documentation to indicate a BN254-specific optimization.

Status: Resolved [53a62f2]

4

https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L145
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L115
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L151
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L120
https://github.com/EspressoSystems/espresso-sequencer/commit/aba35f1e9e1fb8ad943fc0868c0fa3066a08957c
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L305
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L310
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L315
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L320
https://github.com/EspressoSystems/espresso-sequencer/commit/53a62f24e66193ebd0bf8c62b2f239cae9d5865e

M02: Start evaluatePiPoly and evaluateLagrangeOne enumeration from
g1 instead of g0

Affected Code: PolynomialEval.sol (lines 145,115)
Summary: Currently, evaluatePiPoly and evaluateLagrangeOne start enu-

merating the group H from g0, i.e., the coefficient for the public input
is g0 for the first, g1 for the second, etc., instead of g1 for the first, g2

for the second, etc.
Suggestion: We suggest starting from g1 for consistency with the paper,

as this affects the alignment of the L1 and PI polynomials.
Status: Acknowledged

M03: The g1Deserialize function allows deserialization of non-
canonical points

Affected Code: BN254.sol (line 331)
Summary: As the field order is smaller than 2256, there are multi-

ple valid representations of the same field element. Traditionally, the
smallest non-negative integer is used as the canonical representation.
The g1Deserialize function currently does not validate whether the
x-coordinate is canonical. For example, both 1 and 1+ fieldOrder are
deserialized to the same point, (1, 2). This can lead to unexpected
behavior for higher-level applications that rely on the library for the
uniqueness of the deserialize operation.

Suggestion: We suggest that the function reverts if the x-coordinate is
not canonical.

Status: Resolved [cc33b1d, 70c8225]

M04: Transcript does not include common preprocessed input,
or any SRS elements

Affected Code:
• Transcript.sol (line 81)
• IPlonkVerifier.sol (line 52)

Summary: The transcript currently does not include the entirety of the
common preprocessed input (CPI), as specified in the Plonk paper.
Rather, it includes the verification key, in its place. This is partly ac-
ceptable as the elements of the verification key serve as commitments
to the elements of the CPI.
However, the VerifyingKey structure lacks any representative of the
SRS, introducing an unexpected and undesired degree of freedom. In
the paper, the [x]2 is part of the verifier key, whereas in the code, it
is represented as a “magic” value.

5

https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L145
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L115
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L331
https://github.com/EspressoSystems/solidity-bn254/pull/16/commits/cc33b1db0b0451bffd5ca60691d9e927b90e1c24
https://github.com/EspressoSystems/solidity-bn254/commit/70c822572827cbbeff853c0d5e3213fe626587ec
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol#L81
https://github.com/EspressoSystems/espresso-sequencer/blob/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/interfaces/IPlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/blob/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/interfaces/IPlonkVerifier.sol#L52

Suggestion: The [x]2 value should be included in the VerifyingKey

structure.
Status: Resolved [8e9790e, 1ce3efd]

M05: The invert function allows inversion of zero

Affected Code: BN254.sol (line 188)
Summary: The current implementation of the invert function allows

the input 0 to be processed. This is incorrect as 0 does not have a
multiplicative inverse in the field.

Suggestion: We recommend that the invert function reverts gracefully
when the input is 0.

Status: Resolved [62b1d9c]

2.3 Low

L01: Inefficient handling of public inputs

Affected Code:
• PlonkVerifier.sol (line 93)
• Transcript.sol (line 153)

Summary: Currently, the functions verify and appendVkAndPubInput use a
dynamically sized array for publicInput, but only validate and utilize
the first eight public inputs. Sending an array with fewer than eight
elements will revert the transaction (with an ’index out of bounds’
error) while sending an array with more than eight elements will result
in some public inputs not being validated and used. Additionally,
using a dynamic length array incurs an additional gas cost to store
the length of the array in memory.

Suggestion: We suggest implementing one of the following approaches:
• If the number of public inputs is fixed at eight, consider using a

fixed-size array as input to the functions to avoid unnecessary gas
costs.

• If the number of public inputs can vary, ensure dynamic input
validation and addition of the input to the transcript to guarantee
that all inputs are properly validated and used.

Status: Resolved [7b9c964, d40c9f7]

L02: Ambiguity of canonical arguments assumption

Affected Code: BN254.sol (lines 100,108,113)

6

https://github.com/EspressoSystems/espresso-sequencer/pull/1819/commits/8e9790e25441019f5ff26138b41f08f32e45fc8f
https://github.com/EspressoSystems/espresso-sequencer/pull/1831/commits/1ce3efde61f364b0ddae399d768e90b83bdf0413
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L188
https://github.com/EspressoSystems/solidity-bn254/pull/15/commits/62b1d9c87d1c7522ce8625ba59d264fe2aafa82a
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L93
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol#L153
https://github.com/EspressoSystems/espresso-sequencer/pull/1835/commit/7b9c964435fa08b705375503b0ed6c0569ba2c36
https://github.com/EspressoSystems/espresso-sequencer/pull/1940/commits/d40c9f71fbd8125e67f18c8c5a4baabc9e325f39
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L100
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L108
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L113

Summary: As the field order is smaller than 2256, there are multi-
ple valid representations of the same field element. Traditionally, the
smallest non-negative integer is used as the canonical representation;
however, other representations exist. Adding any integer multiple of
the R_MOD to the canonical representation produces a value that be-
haves identically modulo R_MOD, but not in the integers or when treated
as a byte string. It is unclear if the library consistently treats argu-
ments as canonical across all functions. While this does not cause
issues when used by the PLONK verifier contract, it could lead to
potential problems in other contexts.

Suggestion: We recommend that all functions (except validateG1Point

and validateScalarField) that take a typed field element as an argu-
ment should assume that the representation is canonical and ensure
that any field elements returned are also canonically represented. We
have referenced above the functions that should be updated to reflect
this assumption.

Status: Resolved [3547dfa, 70c8225]

L03: Challenge generation logic deviates from the protocol spec-
ification

Affected Code: Transcript.sol (line 45)
Summary: The transcript is a log of public inputs, verifying key, and all

the messages exchanged between the prover and the verifier. Accord-
ing to the PLONK paper and the Fiat Shamir heuristic, challenges
are generated by hashing the current state of the transcript.
However, the current implementation prepends the hash of the current
transcript to the transcript itself and then hashes that to generate
the new challenge. This additional step deviates from the protocol
specification. Additionally, the function getAndAppendChallenge copies
both the hash and the transcript to a new memory location each time
it is called. This practice is inefficient and unnecessary.

Suggestion: We suggest directly hashing the transcript to align with
the standard protocol specifications. Additionally, when generating
multiple challenges for the same round (such as β and γ), concatenate
an index to the transcript and hash the result. For example:

β = H(transcript, 0)

γ = H(transcript, 1)

Status: Resolved [a0e382d, 1ce3efd]

7

https://github.com/EspressoSystems/solidity-bn254/pull/19/commit/3547dfa63149ecc477bd20359d01159b16d59106
https://github.com/EspressoSystems/solidity-bn254/commit/70c822572827cbbeff853c0d5e3213fe626587ec
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol#L45
https://github.com/EspressoSystems/espresso-sequencer/commit/pull/1829/a0e382d51a7343e2d9c1b4e3ce79de14e0810f2d
https://github.com/EspressoSystems/espresso-sequencer/pull/1831/commits/1ce3efde61f364b0ddae399d768e90b83bdf0413

L04: Type safety issues

Summary: The code frequently wraps and unwraps library types to per-
form basic operations, which reduces readability and increases the risk
of errors. There are inconsistencies in the types of arguments rep-
resenting the same value across different functions. For example, in
the evaluateLagrangeOne function, the variable ζ is represented by a
ScalarField type, whereas in the evalDataGen and evaluatePiPoly func-
tions, ζ is represented by a uint256.

Suggestion: We recommend using library types consistently throughout
the codebase. Every typed variable should be assumed to be valid and
canonical whereas every typecast (wrap/unwrap) operation should be
validated or explicitly documented safe. We also recommend utilizing
type-safe library functions to reduce the typecasting. Keep in mind
that there is a gas cost trade-off when performing an additional func-
tion call.

Status: Acknowledged

L05: Suboptimal verifier code due to missing MSM implemen-
tation

Affected Code:
• PlonkVerifier.sol
• BN254.sol (line 173)

Summary: In the verifier code, particularly within the
_preparePolyCommitments function, arrays of bases and scalars are allo-
cated and passed between functions with the expectation of a valid
Multi-Scalar Multiplication (MSM) implementation. However, the
multiScalarMul function implementation only performs the naive iter-
ative scalar multiplication and addition. This results in the following
issues:
• The allocation (PlonkVerifier.sol (lines 154,482)) and copying of
arrays (PlonkVerifier.sol (line 488 - L493)) result in unnecessary
memory overhead.

• Severe overhead in code complexity and gas cost is introduced in
the _batchVerifyOpeningProofs function.

Suggestion: We recommend refactoring the code to immediately calcu-
late the dot products and cumulative sums instead of passing around
the scalars and bases arrays and then applying the naive MSM algo-
rithm.

Status: Acknowledged

8

https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L173
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L154
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L482
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L488 - L493

2.4 Informational

I01: Inefficient memory allocation in transcript generation logic

Affected Code:
• PlonkVerifier.sol (line 173)
• Transcript.sol (line 81)

Summary: The current implementation of the function
_computeChallenges in PlonkVerifier.sol and appendVkAndPubInput in
Transcript.sol inefficiently manages memory by repeatedly calling
abi.encodePacked to concatenate elements to the transcript. Each call
to abi.encodePacked results in a new memory allocation and copying of
the existing transcript, leading to excessive gas consumption.

Suggestion: Create a struct containing all the fields that are appended
to the transcript. Hash the parts of the struct using low-level memory
access to generate the relevant challenges. To allow for tight packing
of the transcript, one can also use a bytes array instead of a struct
and low-level memory writes to populate the array.

Status: Resolved [1ce3efd, d414934]

I02: Redundant endianness reversal in transcript generation and
serialization logic

Affected Code:
• Transcript.sol (lines 45,81)
• PlonkVerifier.sol (line 173)
• BN254.sol (lines 313,331)

Summary: The current implementation reverses the endianness of all
entries appended to the transcript. This is done to ensure compati-
bility with previous off-chain implementations. However, this step is
redundant for the correct functioning of the Fiat-Shamir heuristic.

Suggestion: We suggest removing the endianness reversal step from the
transcript generation and point serialization/deserialization to sim-
plify the code and reduce gas cost.

Status: Resolved [720ad31, 1ce3efd]

I03: Gas optimization of evaluatePiPoly

Affected Code: PolynomialEval.sol (line 145-L231)
Summary: Currently, the batch inversion method is used to minimize

the number of necessary inversions. This requires computing the prod-
uct

∏
j ̸=i(ζ − gj) for each i. The current implementation performs

n(n − 1) multiplications, but can be optimized to only perform 3n
multiplications.

9

https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L173
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol#L81
https://github.com/EspressoSystems/espresso-sequencer/pull/1831/commits/1ce3efde61f364b0ddae399d768e90b83bdf0413
https://github.com/EspressoSystems/espresso-sequencer/pull/1943/commits/d4149348bb4c8e7f89ebd60665674f2d8c41d992
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol#L45
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol#L81
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L173
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L313
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L331
https://github.com/EspressoSystems/espresso-sequencer/pull/1801/commits/720ad31aa77406447b612fdc710a068a7d2fe7ad
https://github.com/EspressoSystems/espresso-sequencer/pull/1831/commits/1ce3efde61f364b0ddae399d768e90b83bdf0413
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L145-L231

Suggestion: We suggest optimizing the product computation by imple-
menting the product-of-array-except-self algorithm. This can be done
by precomputing prefix and suffix products of the array consisting
of (ζ − gj). Then, multiply prefix[i] and suffix[i] to obtain the
product

∏
j ̸=i(ζ − gj). This approach reduces the number of multipli-

cations to 3n while keeping the number of inversions to 1. For n = 8,
this reduces the number of multiplications from 56 to 24, reducing gas
cost by ∼10K.

Code Suggestion: EspressoSystems/espresso-sequencer/pull/1716
Status: Resolved [ca07365, 7b9c964]

I04: Redundant fields in the EvalDomain struct

Affected Code: PolynomialEval.sol (lines 17,21)
Summary: The EvalDomain struct contains separate fields for size and

logSize, even though size can be derived from logSize using a single-
bit shift operation. Additionally, the groupGenInv field is defined but
not used anywhere in the code.

Suggestion: We recommend removing the size and groupGenInv fields
from the EvalDomain struct.

Status: Resolved [4ddfd04, 9990e9a]

I05: Inefficient runtime calculation of domain elements and eval
domain

Affected Code: PolynomialEval.sol (line 235-L258)
Summary: Currently, domain elements and eval domain are computed

at runtime, which leads to unnecessary gas consumption. This ap-
proach is inefficient if the public input size and the domain size remain
fixed.

Suggestion: For a given verifying key, we recommend computing the
domain elements and eval domain in the constructor and storing
them as immutable constants. Similar to the getVk function, we can
add getDomainElements and getEvalDomain functions which load these
constants into memory.

Status: Resolved [9068eea]

I06: Inefficient use of memory for read-only arguments

Affected Code: PlonkVerifier.sol (line 91)
Summary: The verify function takes three arguments all of which are

read-only.

10

https://www.w3resource.com/data-structures-and-algorithms/array/dsa-product-of-array-except-self.php#:~:text=Create%20two%20arrays%20'prefix'%20and,elements%20except%20nums%5Bi%5D.
https://github.com/EspressoSystems/espresso-sequencer/pull/1716
https://github.com/EspressoSystems/espresso-sequencer/pull/1822/commits/ca073657e54aba93e22f15cd307d7936ebce8e8d
https://github.com/EspressoSystems/espresso-sequencer/pull/1835/commit/7b9c964435fa08b705375503b0ed6c0569ba2c36
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L17
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L21
https://github.com/EspressoSystems/espresso-sequencer/pull/1840/commits/4ddfd04cdc4b3c45ac13af8398149453bc48d6d8
https://github.com/EspressoSystems/espresso-sequencer/pull/1840/commits/9990e9a049d12d16de194fc9611ef7b3287eac28
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L235-L258
https://github.com/EspressoSystems/espresso-sequencer/pull/1860/commits/9068eea5b687e8925b8dae5c6c4034a2073cbe23
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L91

Suggestion: We recommend using calldata for the proof, publicInput,
and verifyingKey arguments and making the necessary changes to the
rest of the codebase to support this update.

Status: Acknowledged

I07: Inconsistent definition and usage of COSET_Ki constants

Affected Code:
• Transcript.sol (line 104-L119)
• PlonkVerifier.sol (line 28-L35)

Summary: The COSET_Ki constants are used across multiple contracts.
In the PlonkVerifier contract, these are defined as constants, whereas
in the Transcript contract, they appear as magic numbers. This can
lead to difficulties in maintaining the codebase.

Suggestion: We recommend refactoring the code to reference a single
source of truth for the COSET_Ki constants. This can be achieved by
defining these constants in a common library or a shared contract.

Status: Resolved [2f40358]

I08: Incomplete test coverage of library functions

Affected Code:
• BN254.sol (lines 83,91,100,108,113,135)
• BN254.sol (lines 140,145,150,173,188,234)
• BN254.sol (lines 313,331)

Summary: Several functions (infinity, isInfinity, negate, add, mul,
multiScalarMul, invert, validateScalarField, g1Serialize, and
g1Deserialize) in the library lack sufficient test coverage.

Suggestion: Write unit tests for all the functions to ensure the library’s
correctness and ease of maintenance.

Status: Acknowledged

I09: Redundant success checks for staticcall()

Affected Code: BN254.sol (lines 126-L131,163-L168)
Summary: The success of the staticcall() function is verified twice in

the referenced code segments, leading to an extra, redundant check.
Suggestion: We recommend consolidating the verification into a single

success check.
Status: Resolved [1ead65b]

11

https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol#L104-L119
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L28-L35
https://github.com/EspressoSystems/espresso-sequencer/pull/1836/commits/2f40358d7bc1cd0c8b7073a7db43220d407aa45f
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L83
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L91
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L100
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L108
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L113
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L135
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L140
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L145
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L150
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L173
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L188
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L234
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L313
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L331
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L126-L131
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L163-L168
https://github.com/EspressoSystems/solidity-bn254/pull/21/commits/1ead65bc6c5a29cdcaedc6831b44c19a4123d860

I10: Inconsistent return type in the g1Serialize function

Affected Code: BN254.sol (line 313)
Summary: The g1Serialize function currently returns a bytes type,

which is (i) inconsistent with the input type expected by the
g1Deserialize function and (ii) gas inefficient.

Suggestion: We recommend changing the return type of g1Serialize to
bytes32.

Status: Resolved [08d2094, 4f3bd26]

I11: Non-standard way of deriving randomness for batch verifi-
cation

Affected Code: PlonkVerifier.sol (line 545-L550)
Summary: Batch verification constructs a randomizer by hashing to-

gether the u challenges of the individual proofs. The usual practice is
to hash the terms being batched together. However, each individual
term is included in the hash calculation that produces the correspond-
ing u value. Thus, the change does not impact the security argument.

Suggestion: Document that the terms are implicitly represented by u.
Status: Resolved [318af16]

I12: Deviation from positive or negative G1 point encoding con-
ventions

Affected Code: BN254.sol (line 286)
Summary: The encoding of G1 points assigns higher values to the en-

coding of positive Y-coordinates and lower values to the encoding of
negative Y-coordinates, which is unconventional.

Suggestion: We suggest the following two options:
• Update the documentation to include a clear definition of what
“positive” means in the context of G1 point encoding and clarify
that the current design choices were made to ensure compatibility
with the Arkworks library [Lib].

• Alternatively, update the code to match the conventional practice
of encoding positive points as small and negative points as big.

Status: Acknowledged

I13: Inconsistent staticcall offsets and gas subtraction

Affected Code: BN254.sol (lines 126,163)

12

https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L313
https://github.com/EspressoSystems/solidity-bn254/pull/22/commits/08d209466b8ba439020eba4ae682ff937a3462e6
https://github.com/EspressoSystems/solidity-bn254/pull/22/commits/4f3bd264242b178ceb33d18df471120f28057ab6
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L545-L550
https://github.com/EspressoSystems/espresso-sequencer/pull/1821/commits/318af16fdb1bb7b8c079e5047ea8a0dc79e4a02c
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L286
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L126
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L163

Summary: The current implementation calls staticcall with input and
return offsets that do not match the sizes expected by the precompiled
contracts ecAdd and ecMul. Additionally, the subtraction of 2,000 gas
units is unnecessary.

Suggestion: We recommend updating the input and return offsets to re-
flect the exact sizes of the input and return data. Additionally, remove
the unnecessary gas subtraction.

Status: Resolved [421f2b9]

I14: Redundant code segments

Affected Code: PlonkVerifier.sol (lines 411,485,516)
Summary: The final update of vBase in the _preparePolyCommitments func-

tion is unnecessary. Additionally, in the _verifyOpeningProofs function,
the sumEvals variable can be omitted since it is initialized to 0 and
pcsInfo.eval is only added to it once.

Suggestion: Remove the redundant code segments. Consider directly
using pcsInfo.eval instead of sumEvals in the _verifyOpeningProofs func-
tion.

Status: Resolved [f2169b8]

I15: Unused function _batchVerifyOpeningProofs

Affected Code: PlonkVerifier.sol (line 540)
Summary: The _batchVerifyOpeningProofs function is not used within the

codebase and is currently defined as an internal function.
Suggestion: If the function is intended to be used, consider exposing

this functionality through a public or external function. Otherwise,
remove the function from the codebase.

Status: Resolved [318af16]

I16: Redundant function evaluateLagrangeOne

Affected Code: PolynomialEval.sol (line 115)
Summary: The function evaluateLagrangeOne computes the first

Lagrange polynomial evaluation. However, this evaluation is also cal-
culated as an intermediate result in the function evaluatePiPoly.

Suggestion: We recommend removing the evaluateLagrangeOne function
and modifying evaluatePiPoly to return both the first Lagrange poly-
nomial evaluation and the public input polynomial evaluation. This
change would optimize gas usage and reduce code complexity.

Status: Acknowledged

13

https://github.com/EspressoSystems/solidity-bn254/pull/21/commits/421f2b92755bda86a357453f965f171eb557834f
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L411
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L485
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L516
https://github.com/EspressoSystems/espresso-sequencer/pull/1821/commits/f2169b89689c91ec5e7b780dffdce8f08d096946
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L540
https://github.com/EspressoSystems/espresso-sequencer/pull/1821/commits/318af16fdb1bb7b8c079e5047ea8a0dc79e4a02c
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L115

I17: Inconsistent comment

Affected Code: PlonkVerifier.sol (line 769)
Summary: There is a discrepancy between the code and the comment

referenced above. While the code correctly uses
verifyingKey.sigma4 ([sσ4]1), the comment incorrectly refers to [sσ3]1.

Suggestion: We suggest updating the comment to reflect the formula
accurately.

Status: Resolved [5d41633, e9282be]

I18: Unhandled case in multiScalarMul function

Affected Code: BN254.sol (line 173)
Summary: The current implementation of the multiScalarMul function

does not handle the scenario where empty arrays are passed as argu-
ments.

Suggestion: Consider adding a check for empty arrays and reverting
with an appropriate error message.

Status: Resolved [3fdaf5a]

I19: g1Serialize function optimization

Affected Code: BN254.sol (line 313)
Summary: In the case when infinity is passed to g1Serialize function,

it first creates a bitmask and then ors it with the encoding of the
x-coordinate.

Suggestion: As the encoding of infinity is unique, we suggest directly
returning the serialized infinity point.

Status: Resolved [8ca1c70, 4f3bd26]

A Additional Artifacts

In this section, we provide a brief outline of the data structures used inside
the verifier as well as an outline of the verification algorithm of [GWC19],
as modified by the additional wires and gates used.

A.1 Verification Data Structures

4This is the scalar that’s multiplied with [1]1 to produce [E]1.
5These are the scalars that produce [D]1 via an MSM.
6These are the bases that produce [D]1 via an MSM.

14

https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L769
https://github.com/EspressoSystems/espresso-sequencer/pull/1812/commits/5d41633e53671efecae1faab48f012821637f058
https://github.com/EspressoSystems/espresso-sequencer/pull/1812/commits/e9282be7df083e84ebad55bec045dc958190583b
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L173
https://github.com/EspressoSystems/solidity-bn254/pull/17/commits/3fdaf5a5c93332c2b58ce5fe0460bb25654867ae
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol
https://github.com/EspressoSystems/solidity-bn254/tree/4f2e93be209b06fdf38584e6bf1d1e8f4c371198/src/BN254.sol#L313
https://github.com/EspressoSystems/solidity-bn254/pull/18/commits/8ca1c7051d4780c61d30e4c4a7b83d8b7651db0d
https://github.com/EspressoSystems/solidity-bn254/pull/22/commits/4f3bd264242b178ceb33d18df471120f28057ab6

struct PlonkProof struct VerifyingKey

Plonk Ref Variable Offset Plonk Ref Variable Offset

[a]1 G1Point wire0 0x00 n uint256 domainSize 0x00
[b]1 G1Point wire1 0x20 fixed l = 8 uint256 numInputs 0x20
[c]1 G1Point wire2 0x40 [sσ1]1 G1Point sigma0 0x40
[d]1 G1Point wire3 0x60 [sσ2]1 G1Point sigma1 0x60
[e]1 G1Point wire4 0x80 [sσ3]1 G1Point sigma2 0x80
[z]1 G1Point prodPerm 0xA0 [sσ4]1 G1Point sigma3 0xA0

[tlowest]1 G1Point split0 0xC0 [sσ5]1 G1Point sigma4 0xC0
[tlow]1 G1Point split1 0xE0 [q1]1 G1Point q1 0xE0
[tmid]1 G1Point split2 0x100 [q2]1 G1Point q2 0x100
[thi]1 G1Point split3 0x120 [q3]1 G1Point q3 0x120

[thigher]1 G1Point split4 0x140 [q4]1 G1Point q4 0x140
[Wζ]1 G1Point zeta 0x160 [qM12]1 G1Point qM12 0x160
[Wζω]1 G1Point zetaOmega 0x180 [qM13]1 G1Point qM34 0x180

ā ScalarField wireEval0 0x1A0 [qO]1 G1Point qO 0x1A0
b̄ ScalarField wireEval1 0x1C0 [qC]1 G1Point qC 0x1C0
c̄ ScalarField wireEval2 0x1E0 [qH1]1 G1Point qH1 0x1E0
d̄ ScalarField wireEval3 0x200 [qH2]1 G1Point qH2 0x200
ē ScalarField wireEval4 0x220 [qH3]1 G1Point qH3 0x220
s̄σ1 ScalarField sigmaEval0 0x240 [qH4]1 G1Point qH4 0x240
s̄σ2 ScalarField sigmaEval1 0x260 [qEcc]1 G1Point qEcc 0x260
s̄σ3 ScalarField sigmaEval2 0x280
s̄σ4 ScalarField sigmaEval3 0x2A0
z̄ω ScalarField prodPermZetaOmegaEval 0x2C0

Table 1: Structure of proofs and verification keys.

struct Challenges

Plonk Ref Variable Offset

α uint256 alpha; 0x00
α2 uint256 alpha2; 0x20

α3 (unused) uint256 alpha3; 0x40
β uint256 beta; 0x60
γ uint256 gamma; 0x80
ζ uint256 zeta; 0xA0
v uint256 v; 0xC0
u uint256 u; 0xE0

Table 2: Structure of challenges.

struct PcsInfo

Variable Offset PcsInfo Ref Plonk Ref Description

uint256 u; 0x00 chal.u u a random combiner –challenge
uint256 evalPoint; 0x20 zeta ζ the point to be evaluated at –also from challenge

uint256 nextEvalPoint; 0x40 zetaOmega ζω the shifted point to be evaluated at
uint256 eval; 0x60 eval E4 the polynomial evaluation value

uint256[] commScalars; 0x80 commScalars D5 scalars of poly comm for MSM
G1Point[] commBases; 0xa0 commBases D6 bases of poly comm for MSM
G1Point openingProof; 0xc0 proof.zeta [Wζ]1 proof of evaluations at point ‘eval point‘

G1Point shiftedOpeningProof; 0xe0 proof.zetaOmega [Wζω]1 proof of evaluations at point ‘next eval point‘

Table 3: Structure of PcsInfo.

15

A.2 Verification Algorithm

Adjusted from [GWC19] to account for wires, and custom gates.

1. Validate the 13 G1Points of the proof: 5 wires, 1 prodPerm, 5 split values,
2 W values (total 13). Implemented in PlonkVerifier.sol (line 111-
L138).

2. Validate the 10 ScalarFields of the proof. Currently: 5 wire scalars, 4
permutation scalars, prodPermZetaOmegaEval. Implemented in PlonkVer-
ifier.sol (line 111-L138).

3. Validate the l elements of public input. (Fixed to l = 8). Implemented
in PlonkVerifier.sol (line 98-L105).

4. Compute challenges β, γ, α, ζ, v, u ∈ F. Implemented PlonkVerifier.sol
(line 173-L248) in _computeChallenges and also Transcript.sol (line 9).

5. Compute zero polynomial evaluation ZH(ζ) = ζn − 1. See Polynomi-
alEval.sol (line 89-L111) for implementation.

6. Compute Lagrange polynomial evaluation L1(ζ) =
ω(ζn−1)
n(ζ−ω) . See Poly-

nomialEval.sol (line 115-L142) for implementation.
7. Compute public input polynomial evaluation

PI(ζ) =
∑

i∈[l] (wiLi(ζ))). See PolynomialEval.sol (line 144-L231) for
implementation.

8. Compute r0 := PI(ζ)− L1(ζ)α
2 − α(ā+ βs̄σ1 + γ)(b̄+ βs̄σ2 + γ)(c̄+

βs̄σ3+γ)(d̄+βs̄σ4+γ)(ē+γ)z̄ω. See PlonkVerifier.sol (line 281-L337)
under _computeLinPolyConstantTerm for implementation.

9. Compute [D]1, line by line. See PlonkVerifier.sol (line 668-L964) under
_linearizationScalarsAndBases for implementation.
(a) ā[q1]1+b̄[q2]1+c̄[q3]1+d̄[q4]1+āb̄[qM12]1+c̄d̄[qM34]1−ē[qO]1+[qC]1+

ā5[qH1]1 + b̄5[qH2]1 + c̄5[qH3]1 + d̄5[qH4]1 + āb̄c̄d̄ē[qecc]1
(b) ((ā+ βζ + γ)(b̄+ βk1ζ + γ)(c̄+ βk2ζ + γ)

(d̄+ βk3ζ + γ)(ē+ βk4ζ + γ)α+ L1(ζ)α
2 + u) · [z]1

(c)
(d) −(ā+βs̄σ1+γ)(b̄+βs̄σ2+γ)(c̄+βs̄σ3+γ)(d̄+βs̄σ4+γ)αβz̄ω ·[sσ5]1
(e) −ZH(ζ) · ([tlowest]1 + ζn+2[tlo]1 + ζ2n+4[tmid]1 + ζ3n+6[thi]1+

+ζ4n+8[thighest]1)
10. Compute [F]1 := [D]1 + v · [a]1 + v2 · [b]1 + v3 · [c]1 + v4 · [d]1 + v5 ·

[e]1 + v6[sσ1] + v7[sσ2] + v8[sσ3] + v9[sσ4]. See PlonkVerifier.sol (line
339-L417) under _preparePolyCommitments for implementation.

11. Compute [E]1 := (−r0 + vā+ v2b̄+ v3c̄+ v4d̄+ v5ē+ v6s̄σ1 + v7s̄σ2 +
v8s̄σ3 + v9s̄σ4 + uz̄ω) · [1]1. See PlonkVerifier.sol (line 419-L445) under
_prepareEvaluations for implementation.

12. e([Wζ]1+u · [Wζω]1, [x]2)
?
= e(ζ · [Wζ]1+uζω · [Wζω]1+[F]1− [E]1, [1]2).

Implemented in PlonkVerifier.sol (line 447-L534).

16

https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L111-L138
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L111-L138
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L111-L138
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L98-L105
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L173-L248
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/Transcript.sol#L9
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L89-L111
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L115-L142
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PolynomialEval.sol#L144-L231
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L281-L337
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L668-L964
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L339-L417
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L419-L445
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/773cfae63f6cd7fb08b4437d526a868a8a84269c/contracts/src/libraries/PlonkVerifier.sol#L447-L534

A.3 Constant Sanity Checks

The following script checks that the subgroup and coset constants are
well structured.

1 r=2188824287183927522224640574525727508854836440041603434369820418\

2 6575808495617

3

4

5 d16=[16,

6 65536,

7 0x30641e0e92bebef818268d663bcad6dbcfd6c0149170f6d7d350b1b1fa6c1001,

8 0x00eeb2cb5981ed45649abebde081dcff16c8601de4347e7dd1628ba2daac43b7,

9 0x0b5d56b77fe704e8e92338c0082f37e091126414c830e4c6922d5ac802d842d4]

10

11 d17=[17,

12 131072,

13 0x30643640b9f82f90e83b698e5ea6179c7c05542e859533b48b9953a2f5360801,

14 0x1bf82deba7d74902c3708cc6e70e61f30512eca95655210e276e5858ce8f58e5,

15 0x244cf010c43ca87237d8b00bf9dd50c4c01c7f086bd4e8c920e75251d96f0d22]

16

17 d18=[18,

18 262144,

19 0x30644259cd94e7dd5045d7a27013b7fcd21c9e3b7fa75222e7bda49b729b0401,

20 0x19ddbcaf3a8d46c15c0176fbb5b95e4dc57088ff13f4d1bd84c6bfa57dcdc0e0,

21 0x36853f083780e87f8d7c71d111119c57dbe118c22d5ad707a82317466c5174c]

22

23

24 d19=[19,

25 524288,

26 0x3064486657634403844b0eac78ca882cfd284341fcb0615a15cfcd17b14d8201,

27 0x2260e724844bca5251829353968e4915305258418357473a5c1d597f613f6cbd,

28 0x6e402c0a314fb67a15cf806664ae1b722dbc0efe66e6c81d98f9924ca535321]

29

30 d20=[20,

31 1048576,

32 0x30644b6c9c4a72169e4daa317d25f04512ae15c53b34e8f5acd8e155d0a6c101,

33 0x26125da10a0ed06327508aba06d1e303ac616632dbed349f53422da953337857,

34 0x100c332d2100895fab6473bc2c51bfca521f45cb3baca6260852a8fde26c91f3

35]

36

37 d5=[5,32,

38 0x2ee12bff4a2813286a8dc388cd754d9a3ef2490635eba50cb9c2e5e750800001,

39 0x9c532c6306b93d29678200d47c0b2a99c18d51b838eeb1d3eed4c533bb512d0,

40 0x2724713603bfbd790aeaf3e7df25d8e7ef8f311334905b4d8c99980cf210979d

41]

42

43 for d in [d5,d16,d17,d18,d19,d20]:

44 print("Checking d=",d[0])

45 print(2**d[0]==d[1]) #size vs logsize

17

46 print(1==d[1]*d[2]%r) #inverse of size

47 print(1==d[3]*d[4]%r) #inverse of gen

48 print(d[3]==pow(d[4],-1,r)) #extra inverse

49 print(1==pow(d[3],d[1],r)) #gen has at most claimed order

50 print(1!=pow(d[3],d[1]-1,r)) #gen does not have half order (no

factors other than 2)

51

52

53 #Coset uniqueness verification

54

55 twoadicity=0

56 r0=r-1

57 while (0==r0%2):

58 r0//=2

59 twoadicity+=1

60

61 print (twoadicity)

62

63

64 K=[0]*5

65 K[1]=0x2f8dd1f1a7583c42c4e12a44e110404c73ca6c94813f85835da4fb7bb \\

1301d4a;

66 K[2]=0x1ee678a0470a75a6eaa8fe837060498ba828a3703b311d0f77f010424 \\

afeb025;

67 K[3]=0x2042a587a90c187b0a087c03e29c968b950b1db26d5c82d666905a689 \\

5790c0a;

68 K[4]=0x2e2b91456103698adf57b799969dea1c8f739da5d8d40dd3eb9222db7 \\

c81e881;

69 Z=[pow(x,r-1,r) for x in K]

70 print(Z)

71 R=[pow(x,r-2,r) for x in K]

72 #R has inverses of elements, we check that no

73 #non-trivial product is in the subgroup

74 for i in range(4):

75 for j in range(4):

76 if i==j :continue

77 print (1!=pow((K[i+1]*R[j+1])%r,2**twoadicity,r))

78

79

80 print

18

References

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, Paper 2019/953, 2019. https:

//eprint.iacr.org/2019/953.
Lib. Arkworks BN254 Library. ark-bn254. https://docs.rs/ark-bn254/latest/

ark_bn254/.

19

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://docs.rs/ark-bn254/latest/ark_bn254/
https://docs.rs/ark-bn254/latest/ark_bn254/

About Common Prefix

Common Prefix is a blockchain research, development, and consulting
company consisting of scientists and engineers specializing in many as-
pects of blockchain science. We work with industry partners who are look-
ing to advance the state-of-the-art in our field to help them analyze and
design simple but rigorous protocols from first principles, with provable
security in mind.

Our consulting and audits pertain to theoretical cryptographic proto-
col analyses as well as the pragmatic auditing of implementations in both
core consensus technologies and application layer smart contracts.

20

	 Espresso Turbo-PLONK verifier and BN254 Audit
	References

