
Flashbots report:
System requirements, existing and new solutions,

and their efficiency.

Orestis Alpos1, Bernardo David1,2, Nikolas Kamarinakis1, and Dionysis Zindros1,3

1 Common Prefix
2 IT University of Copenhagen (ITU)

3 Stanford University

Last update: June 20, 2024

1 Introduction

Censorship resistance [17, 28, 29] with short-term inclusion guarantees is an important
feature of decentralized systems, missing from many state-of-the-art and even deployed
consensus protocols. In leader-based protocols the leader arbitrarily selects the trans-
actions to be included in the new block, and so does a block builder in permissionless
protocols, such as Bitcoin and Ethereum.

In a different line of work, the redundancy of consensus for implementing simple
payment systems has been recently recognized [16]. Since then, consensusless protocols
have been described in theory [10, 22] and deployed in the real world [3], resulting in
more efficient blockchain and payment systems.

In this report we review existing consensus and consensusless protocols (Section 2)
with regard to their censorship-resistance, efficiency, and other properties relevant for
Flashbots. Moreover, we present new constructions with these properties in mind, build-
ing on existing leader-based protocols (Section 3) and exploring an efficient consensusless
approach (Section 4). In section 5 we approach censorship-resistance based on rational
and incentive-based arguments, and in Section 7 we summarize our findings and make
our recommendations.

1.1 Model

Model. We distinguish two types of parties, n replicas (also called validators in other
works) and an unlimited number of clients. Replicas run the protocol and clients interact
with it using its interface. We call a party – replica or client – honest, if it follows the
protocol, and malicious otherwise. Notice that malicious parties can arbitrarily deviate
from protocol specifications.

Network. We review protocols modelled in the synchronous, partially synchronous, and
asynchronous model. In the synchronous model, we assume that every message is de-
livered within a known finite delay of ∆ rounds. In the partially synchronous model,
we assume that messages are delivered within a known finite delay of ∆ rounds only
after an unknown but finite period of time called the Global Stabilization Time (GST).
Messages sent before the GST may be delivered only ∆ rounds after the GST. Finally, in
the asynchronous model, we assume that messages are delivered within an unknown but
finite delay. We denote by δ the actual (but unknown) average network delay between
two honest replicas. In synchrony it holds that δ ≤ ∆.

Regarding protocol implementation, ∆ can be hardcoded in the protocol or dynam-
ically discovered from the behavior of the network. Protocols that proceed in the actual
network speed without waiting for ∆-timeouts are called responsive.



1.2 Problem statement

We want to use a protocol, which we refer to as ‘transaction layer’ in this section,
that gets as input user transactions and outputs user transactions, possibly but not
necessarily totally-ordered. The protocol does not execute transactions. The required
are, in a high level, the following.

Short-term censorship resistance: Malicious replicas cannot censor honest clients.
Particularly, they cannot do so even for a short term, meaning that, if the system
makes progress and creates an output, then transactions submitted by honest users
will appear in it.

Finality: We envision applications such as the following: an auction is run by a trusted
party, or in a Trusted Execution Environment, and retrieves its bids from the
transaction-layer protocol. We require that any other client reading the transac-
tion layer at the same time obtains the same set of transactions, i.e., the input to
the auction is finalized and well-defined. This property, together with the assumption
on a trusted auctioneer, will allow for fair and verifiable auction outcome.

Light-client friendly: There exists a succinct way to verify the state of the transaction-
layer protocol. Succinctness in this context means that the size of the state descrip-
tion and verification time are independent of the total number of transactions.

Economic incentives: The nodes that maintain this transaction layer have rational
incentives to do so. These can be incentive based, for example using transaction fees,
or punishment based, based on accountability and punishment conditions.

2 Existing protocols

Censorship resistance vs. transaction duplication. BFT protocols face the following
trade-off, stemming from the fact that up to f parties can be malicious. In order to
avoid censorship, a client has to send its transaction to at least f + 1 replicas, which,
depending on the design of the protocol, may lead to request duplication. As recognized
in the literature [19, 26], the problem is exacerbated in protocols that feature parallel
leaders: it is not straightforward how to ensure that the leaders, who propose blocks in
parallel, do not include the same transactions in them. In this section we explore how
existing protocols handle this trade-off.

2.1 Comparison

In this section we review and compare existing protocols. We present a summary on
Table 1.

By happy path we refer to executions in synchronous periods and without faults. For
execution in the happy path, we report the following: Proposal latency measures the
time (in number of communication steps) from the proposal of a transaction (by one or
more replicas) until it becomes committed by 2f + 1 replicas. Proposal period measures
the time between consecutive proposals. Max tx censorship reports the maximum time
the adversary can delay a specific transaction, assuming the client sent it to all replicas,
until it appears in a proposal, and while the rest of the system makes progress. For
communication complexity, under best we refer to happy-path executions and under
worst to all possible executions. Under benchmark we report the throughput and latency
for WAN deployments under no faults, as reported on the cited papers. We denote by
s the transaction size.
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Table 1: Summary and comparison of various existing protocols and our proposals.
See Section 2.1 for an explanation of the reported metrics. IL stands for the inclusion
lists constructions, which are applied on top of any leader-based protocol. For IL con-
structions, metrics that start with + indicate an incremental overhead to a leader-based
protocol – for explanation of parameters refer to corresponding section. For leader-based
protocols, max tx censorship equals the proposal period times f , as up to f successive
leaders can produce blocks without the censored transaction. For the leader-based add-
on solutions it equals 0, as the leader is limited and cannot censor transactions, or it
equals the transaction propagation time, which must be completed before a proposal
is created. For DAG-based protocols it equals 0, as any transaction sent to sufficiently
many replicas will be included when the protocol commits the next round (or wave, in
their terminology).

Protocol
Theoretical efficiency Bench. (WAN, no faults)

Proposal
latency

Proposal
period

Max tx
censorship

Com. compl. thr. lat.
best worst #rep (tps) (sec) ref.

Tendermint [6] 3∆ 3∆ 3∆f O(n2) O(n2) 32 520 2.83 [9, Fig.6]
100 500 1–9 [11]

HotStuff/DiemBFT [30] 7δ 2δ 2δf O(n) O(n2) 20 50K 1.7 [15, Fig.5]
Jolteon [15] 5δ 2δ 2δf O(n) O(n2) 20 50K 2 [15, Fig.5]
Ditto [15] 5δ 2δ 2δf O(n) O(n2) 20 50K 1.5 [15, Fig.5]

HotStuff-2 [18] 5δ 2δ 2δf O(n) O(n2)
MoonShot [13] 5δ δ δf O(n2) O(n2)

IL (Sec.3.1) +0 +0 0 +O(n2|L|)
IL w. DA (Sec.3.2) +tret +0 tdisp + tret +cda

IL w. b/cast (Sec.3.3) +0 +0 2δ +O(n2s)
IL w. gossip (Sec.3.4) +0 +0 tprop +O(ncgoss)

IL local (Sec.3.5) +0 +0 0 +O(n|L|)
Narwhal/HotStuff [12] 8δ 4δ 0 O(n2) O(n2) 20 125K 1.8 [12, Fig.6]

50 135K 1.8 [12, Fig.6]
Narwhal/Tusk [12] 6δ 4δ 0 O(n2) O(n2) 20 160K 3.2 [12, Fig.6]

50 160K 3.2 [12, Fig.6]
psync-BullShark [23] 4δ 4δ 0 O(n2) O(n2) 20 110K 2.5 [23, Fig.2]

50 130K 2.2 [23, Fig.2]
Mysticeti [2] 3δ 3δ 0 O(n2) O(n2) 10 300K < 1 [2, Fig.4]

50 100K < 1 [2, Fig.4]

2.2 Single-leader protocols

Tendermint [6,9] is a partially synchronous protocol that uses two rounds of voting and
an all-to-all communication pattern. In the happy path, where no faults occur and the
network is synchronous, it has a proposal latency of 3δ. The proposal period is 3δ. The
leader is rotated after every epoch.

HotStuff [30] is a partially synchronous protocol that uses three rounds of voting and
an all-to-leader communication pattern. In the happy path, and assuming an implemen-
tation with threshold signatures, it achieves linear communication. The proposal latency
to 7δ, as every voting round contains an all-to-leader and a leader-to-all communica-
tion step. A module of the protocol called pacemaker is responsible for synchronizing
the views of the replicas. It maintains the current round and, in case of asynchrony
or failures, it sends timeout messages to all replicas. Hence, the worst-case communi-
cation complexity is quadratic, because of the all-to-all timeout messages sent by the
pacemaker. The protocol makes no progress while in asynchrony. Using the technique of
pipelining, a new proposal can be sent in every round, hence the proposal period is 2δ.
HotStuff achieves optimistic responsiveness, meaning it can make progress at network
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speed (i.e., O(δ)) after GST with an honest leader. The three-round version of HotStuff
is also known as DiemBFT [27].

Jolteon [15] is two-round version of HotStuff, achieving a proposal latency of 5δ and
linear communication in the happy path. This is achieved at the cost of a quadratic
view-change procedure (after asynchrony or a malicious leader, each replica has to send
a message of size O(n) to the next leader). As the pacemaker is already quadratic, this
does not affect the worst-case communication of the protocol. Ditto [15] is another two-
round version of HotStuff, that, like Jolteon, also comes with a quadratic view-change
procedure, but replaces the pacemaker with an asynchronous fallback protocol. This
allows the protocol to make progress in case of asynchrony. The combination of Jolteon
over a Narwhal [12] network is known as HotStuff-over-Narwhal and Narwhal/HotStuff.
Finally, HotStuff-2 [18] is also a two-round version of HotStuff, achieving a proposal
latency of 5δ in the happy path, at the cost of losing optimistic responsiveness.

MoonShot [13] builds further on HotStuff-2, adding the idea of optimistic proposals,
where a leader can send a new proposal before receiving enough votes for the previous
one. This drops the proposal period to δ in the happy path at the cost of a quadratic
communication complexity and a more complicated protocol logic. Finally, HotShot4 is
a Proof-of-Stake version of HotStuff.

2.3 Parallel-blocks approach

Several works use the following idea: in each epoch replicas create blocks or ‘mini-blocks’
in parallel and the protocol outputs a subset of them. The goal is to limit the leader
as much as possible, so it has no other option than produce a correct block, or remain
silent.

In HoneyBadger [19] replicas collect user transactions in local buffers. In each epoch
they first create and broadcast blocks in parallel, and then agree on a subset of at least
n − f correctly broadcast blocks, which are all output by the protocol. The authors
observe a trade-off between censorship resistance and protocol throughput. Regarding
the censorship resilience vs. transaction duplication dilemma, the authors propose that
replicas include in their block a small number of transactions from their local view, cho-
sen at random, and that transactions are threshold-encrypted by the clients. Threshold
encryption requires a threshold setup, which either has to be performed by a trusted
party or necessitates the implementation of a Distributed Key Generation (DKG) pro-
tocol. Moreover, it incurs additional computational and communication cost.

DispersedLedger [29] builds on this idea, but instead of broadcast it uses a Data
Availability (formally, Verifiable Information Dispersal, VID) protocol, thus allowing
replicas to vote for a transaction without locally downloading it. The protocol guarantees
that all blocks proposed by honest replicas will be delivered. Transaction duplication
is not resolved – in order to make sure it will not be censored, a client has to send a
transaction to f + 1 replicas, and all of them may include it in their proposed block.

BigDipper [28] is a system that combines a broadcast, a Data Availability (DA), and
a leader-based consensus protocol to build a censorship resistant leader-based consensus
protocol. The ‘mini blocks idea’ is integrated into their DA protocol: Replicas collect
transactions from clients and batch them into a ‘mini block’. The leader receives mini-
blocks from replicas, encodes them appropriately, and disperses the resulting block. The
DA protocol employs 2-dimensional polynomial commitments and Reed-Solomon codes
(similar to state-of-the-art Information Dispersal protocols [1,20]) and BLS signatures,

4https://github.com/EspressoSystems/HotShot
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and consists of two rounds of leader-to-all communication. It achieves the property
that, if a client sends a transaction tx to at least n− f replicas, then tx will be included
in the next block produced [28, Table 3]. The protocol does not handle transaction
deduplication, hence fast transaction inclusion comes at the cost of storing the same
transaction multiple time on the DA layer. The authors show how it can be integrated
into HotStuff-2 [18], but no implementation or benchmark is provided.

Mir-BFT [26] features parallel leaders, each running a standard leader-based proto-
col, such as PBFT. Regarding transaction duplication, the authors propose partitioning
the transaction assignment among the replicas (that is, based on the hash of a trans-
action, there is one leader responsible for it) and periodically rotating this assignment.
This, however, does not differ much from a single-leader protocol, as far as censorship
is concerned, as, in the worst case, a transaction will be assigned to an honest leader
after f such rotations.

Conclusion. A leader in consensus protocols becomes a temporary point of centraliza-
tion, and this contributes to censorship. The aforementioned works aim to completely
remove or limit the power of the leader. On the other hand, employing a leader is a com-
mon technique for efficient consensus (at least, efficient on the so-called ‘happy path’,
where the leader is honest and the network is good), employed by some state-of-the-art
protocols [6, 13, 18, 30]. All aforementioned works achieve censorship resilience at the
cost of duplicating transactions, hence wasting computation, communication, and stor-
age. In Section 3 we present constructions that achieve censorship resistance using the
parallel-blocks idea, can be employed with minimal modification on existing consensus
protocols, and achieve increasingly better transaction deduplication.

2.4 DAG-based protocols

The so-called ‘DAG-based’ protocols observe that the separation of data dissemination
and ordering logic improves the efficiency of consensus protocols. Assuming that clients
send transactions to ‘enough’ (explained in the next paragraph) replicas, DAG-based
protocols achieve short-term censorship resistance by construction, as blocks are created
by all replicas in parallel. This comes, unavoidably, with transaction duplication.

In the asynchronous Narwhal/Tusk [12] the blocks of up to f honest but slow repli-
cas can be arbitrarily delayed (even gargabe-collected, hence never delivered). With up
to f replicas being malicious, in order to achieve short-term censorship resistance trans-
actions have to be sent to 2f + 1 replicas. The partially synchronous BullShark [23,24]
protocol guarantees that, after GST, the blocks of all honest replicas will become deliv-
ered. Hence, assuming being in a synchronous period, clients can send transactions to
f + 1 replicas.

Mysticeti [2] achieves very low latency if there are no Byzantine faults, which the
authors argue is the most common case in practice. The improvement comes mainly
from using an uncertified DAG, where blocks are multicast and not broadcast. This
allows blocks to be sent and committed within three network trips, hitting the lower
bound for consensus. Multicasting also allows validators to equivocate, by sending two
different blocks. If that happens, either only one of them will be committed, or none
will be committed for that epoch. Malicious behavior like this and asynchrony lead to
a less efficient fallback ‘indirect decision rule’. Mysticeti also provides built-in support
for fast-path transactions, that is transactions that do not need to be totally ordered
(see Section 2.5).
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Regarding practical efficiency, as shown in Table 1, Narwhal/Tusk achieves the high-
est throughput (160K with 50 replicas), but also the highest latency. The partially syn-
chronous version of BullShark [23, 24], maintains comparable throughput (130K with
50 replicas) and a better latency, but still over 2 sec. Narwhal/HotStuff [12] achieves
similar throughput (135K with 50 replicas) and the lowest latency, approx. 1.8 seconds.
Mysticeti [2] achieves a throughput of around 300K tps in a deployment with 10 replicas,
and 100K tps in a deployment with 50 replicas, while maintaining sub-second latency.

A significant advantage of DAG-based, compared to leader-based, protocols is their
better resilience to crash faults. This is because they do not employ view-changes. For
example, in benchmarks with ten replicas, BullShark achieves a throughput of 70K tps
when three replicas crash, while its latency becomes approx. 6 seconds [23, Fig. 4]. In
the same experiment, Narwhal/HotStuff [12] also achieves a throughput of 70K tps with
a latency or approx. 10 seconds [12, Fig. 8], while HotStuff achieves a throughput of
10K tps with approx. 14 seconds latency [12, Fig. 8].

Conclusion. DAG-based protocols outperform leader-based protocols in terms of through-
put, while exhibiting comparable latency, in the best case approx. 2 seconds. In order
to achieve sub-second latency, they have been combined in production systems [4] with
consensusless protocols [3].

2.5 Consensusless protocols

Recent literature has recognized the redundancy of consensus for implementing asset-
transfer systems [16]. Such schemes have been described in theory [10,22] and deployed
in the real world [3].

The insight that is total order is not required in the case that each account is
controlled by one client. Instead, it is sufficient to guarantee that cheating clients cannot
equivocate, that is, send different transactions to different replicas. This property is
guaranteed by broadcast protocols. These protocols have a similar architecture: the
broadcast of transactions is initiated by clients, who either drive the whole broadcast
instance [3] or outsource it to trusted replicas [10]. Therefore, a cheating client might
lose liveness [3, 22], but equivocating is not possible.

Specifically, in FastPay [3] a client sends its transaction (a payment to some recipient)
to all replicas, waits for n − f signatures on it, and forms a certificate with them.
The certificate is enough for the sender and the recipient to consider the payment
finalized, because it proves that no conflicting transaction can ever be accepted by the
replicas. The replicas update the balance of the sender and the recipient when they
receive the certificate from the client. A necessary component in the construction is a
sequence number maintained by each client: transactions submitted by a client must
have consecutive sequence numbers, and no transaction may be pending (a transaction
is pending when a replica has signed it but not received the certificate for it) when
the client submits the next one. The sequence number is exactly what provides safety
for payments: clients cannot equivocate (e.g., double-spend) because they can submit at
most one transaction per sequence number, and all transactions submitted by a client are
ordered. Malicious client, trying to send conflicting transactions for a sequence number,
may lose liveness by not being able to form a certificate for any of them.

Astro [10] generalizes the sequence number to an xlog, an append-only log that
contains all outgoing payments from each account, maintained by the single owner of
that account. Only the account owner can broadcast updates to it xlog, hence Astro
guarantees total order within each xlog and achieves safety for payments. ABC [22]
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is similarly based on reliable broadcast [5]. In addition to transactions, replicas can
broadcast votes for transactions they have seen, and the votes are weighted by the
replica’s stake. This enables the system to also work in permissionless settings.

FastPay [3] reaches throughput of 140K tps with a latency of approx. 200 ms in a
WAN deployment with four replicas. Astro [10] achieves a throughput of 5K tps with
latency of approx. 200 ms [10, Fig.4, Astro II] in a WAN deployment with 100 replicas.
ABC [22] provides no implementation or benchmarks.

Conclusion. To the best of our knowledge, the only consensusless system that has been
used in production and supports both payments and arbitrary objects (data declared
in smart contracts) is FastPay in the Sui Blockchain [4]. However, that same work
observes that consensusless protocols cannot offer checkpointing and are prone to losing
liveness even for honest clients, due, for example, to clients’ misconfigurations. For this
reason, the consensusless protocol is combined with a DAG-based consensus protocol [4].
Transactions that do not need total order can be executed as long as the client broadcasts
them, but all transactions eventually go through the consensus protocol. Hence, the
system offers significantly better latency, but a consensus protocol is still required, and
it must be able to handle the total workload of the system. Since different replicas
hold different state at any moment in a consensusless protocol, the combination with a
consensus protocol also allows light clients to deterministically read a consistent state
from the system.

Moreover, all these protocols are tailor-made for payment systems and cannot be
used for general distributed applications. They employ, directly or indirectly, sequence
numbers in order to achieve total-order for transactions sent by each client, a property
that is required [16] for payment systems but not for other use cases, such as auctions.

2.6 Separating block builders and proposers

Chop chop [8] introduces a new layer, called the brokers, between clients and replicas
running a consensus protocol. Brokers are responsible for building blocks of transactions
in a way that minimizes the transaction metadata (such as client signatures) in a block.
This allows blocks to contain a larger number of transactions resulting in a system
with higher throughput, compared to the underlying consensus protocol. On the other
hand, brokers engage in interactive protocols with the clients and the replicas, hence
increasing the time needed for a transaction to get committed. The system can support
multiple brokers, but each of them runs a non-distributed protocol. Hence, fairness
and censorship resistance are not achieved. Encrypting client transactions would not
be enough – the brokers need to know the client behind each transaction because they
engage in an interactive multi-signature protocol, hence they can censor specific clients.

3 Leader-based protocols with inclusion lists

In this section we present solutions that can be plugged in any leader-based protocol.
They change the way a proposal is created and voted for. The underlying protocol pro-
ceeds in epochs and each epoch has a unique leader. We adopt the network model of the
underlying protocol (partially synchronous in case of Tendermint [6] and HotStuff [30]).

3.1 The base protocol

The protocol. Clients submit transactions to replicas. On every epoch of the protocol
each replica creates an inclusion list, signs it and sends it to the leader of that epoch.
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The leader waits for n − f inclusion lists from distinct replicas and creates a block
that contains only the n − f inclusion lists and no other transactions. Upon receiving
the proposal, each replica sends a vote if it considers the block valid, according to the
underlying protocol. The validity condition now additionally requires that the block
contains at least n− f inclusion lists, each signed by a different replica. Note that role
of the leader now only consists in choosing which n− f (or more) inclusion lists will be
used in the new block.

Properties. The protocol achieves the same safety and liveness properties as the underly-
ing leader-based protocol, and the additional short-term censorship resistance property.
Note that, as in the underlying protocol, liveness can be attacked by malicious leaders
(e.g., by remaining silent and not producing any block), but selective censorship is not
possible. We present arguments to incentivize leaders to produce blocks on section 5.

Censorship resistance comes from the fact that the leader can only ignore up to f
inclusion lists. If it ignores more, no honest replica will vote for the proposal. Hence,
the client needs to ensure that f + 1 honest replicas have received its transaction. This
can be achieved by sending it to 2f + 1 replicas.

Special cases.

– It can be the case that not all transactions in the n− f inclusion lists fit in the next
block. To maintain fairness, a deterministic rule is needed for the leader to choose
which transactions to add. One option is to have the leader add transactions by
frequency of appearance in the inclusion lists. A second is to require that transactions
are ordered in the inclusion lists and the leader selects the first x transactions from
each inclusion list, such that x is as large as possible given the block size.

– Contradictory transactions may exist in the inclusion lists, such as two transactions
from a client who can only pay the fees for one of them. We can again break the tie
in a deterministic way, for example by keeping the transaction from the inclusion
list of the replica with the lowest identifier.

Advantages and drawbacks. For an overview of the construction we refer to Table 1.
Our modification can be implemented by having every replica send its inclusion list
together with the last vote message of the previous epoch. For example, if implemented
on Tendermint [6], the inclusion lists can be sent using ABCI++, piggybacked on vote
messages. The proposal latency and proposal period hence remain unchanged. Assuming
the leader does not remain silent and none of the special conditions explained above
applies, an honest client’s transaction will be included in the next block, that is, with
a transaction delay of 0. However, similar to the protocols presented in Section 2.3, the
construction leads to transaction duplication, as a transaction may appear in multiple
inclusion lists. We denote this in Table 1 as an O(n2 · |L|) additional communication
cost, as the leader has to include to its proposal O(n) inclusion lists of average size |L|.
We present mitigations in the following sections.

3.2 Using a Data Availability layer

In this version, the inclusion lists contain references to transactions. The full transactions
are submitted by the client to a Data Availability (DA) layer. We abstract the DA layer
as follows.
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Definition 1 (Data Availability (DA) scheme [20]). A DA scheme is run among
clients and storage servers. It exposes the following algorithms, which are initiated by a
client and by the client and all storage nodes.

– disperse(tx) → P 5: It takes as input a transaction tx and returns a certificate of
retrievability P .

– retrieve(P ) → tx: It takes as input a certificate of retrievability P and returns a
transaction tx or ⊥.

If an honest client invokes disperse(tx), then it will obtain a certificate of retrievability
P , such that, if an honest (and possibly different) client invokes retrieve(P ), then the
second client will obtain tx. Moreover, all calls to retrieve() return the same value to all
honest clients, except with negligible probability, even if the client that initiated disperse()
was malicious (in which case retrieve() may return ⊥).

The protocol. The client firsts submits transaction tx to the DA layer. Once it obtains the
certificate of availability P , it sends it to all replicas. Upon receiving P , if retrieve(P) 6=
⊥ then a replica appends P to its inclusion list, which is forwards to the leader. The
leader waits for n − f valid inclusion lists, where an inclusion list is valid if, for all
certificates of availability P it contains, it holds that retrieve(P) 6= ⊥. The leader creates
a block that contains all transactions retrieved from the n− f valid inclusion lists. The
leader sends a proposal with the new block and the n − f signed inclusion lists to all
replicas. The proposal is valid if it contains n− f inclusion lists and the block contains
all corresponding transactions.

Let tdisp denote the average time of disperse() and tret that of retrieve(). This con-
struction increases the proposal latency by tret, because a replica has to run retrieve()
before voting for a proposal, and the minimum transaction delay becomes tdisp + tret,
because a client needs to disperse tx and the leader checks that it can be retrieved. As-
suming the leader will produce some block, the maximum transaction delay is tdisp + tret

as well. Finally, communication complexity increases by a factor of cda, depending on
the implementation of the DA layer. We show these on Table 1.

Advantages and drawbacks. The inclusion list can now contain pointers to transactions,
while the actual payload exists only in the DA layer. On the other hand, the DA layer
adds latency to the protocol.

Optimizations.

– In order to further reduce the output size, the leader can write the certificates of
availability – instead of the corresponding transactions – in the block. This comes at
the cost or requiring clients to query the DA layer and retrieve it.

– We can allow clients to submit invalid certificates of availability, i.e., P for which
retrieve(P) = ⊥. This works because, by the properties of the DA scheme, clients
that read the output of our protocol will agree on the output of retrieve(P). The
drawback of this is that the output can contain garbage transactions.

We remark that the proposed construction is similar to BigDipper [28], with the
following differences. First, the DA layer is here decoupled from the consensus layer,
and it is the client’s responsibility to disperse the transaction. Second, our protocol
achieves transaction deduplication, as the leader includes each transaction only once in
the proposed block.

5We abstract the commitment C from [20] inside P .
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3.3 Using reliable broadcast

Instead of using a separate Data Availability layer, in this section we have the client
broadcast tx to the replicas.

The protocol. The client sends a transaction tx using a version of reliable broadcast [5].
The broadcast algorithm consists of three communication steps. On the first, the client
sends tx to all replicas. The other two consist of all-to-all communication among the
replicas. When a replica delivers tx, it adds to its inclusion list the hash of tx. By
properties of reliable broadcast, if an honest replica delivers tx, then all honest will
eventually deliver tx. Hence, for every inclusion list of an honest replica, the leader will
eventually deliver all included transactions. The leader includes in the new block the
first n− f inclusion lists whose transactions are delivered in the broadcast layer.

As shown on Table 1, when implemented on top of a leader-based protocol, this
construction results in a minimum and maximum transaction delay of 2δ, (for the max-
imum we assume the leader will not remain silent), because reliable broadcast requires
two additional communication rounds. Proposal latency and proposal period remain
unchanged, while communication complexity increases by a factor of O(n2 · s), where s
is the average transaction size.

Advantages and drawbacks. The inclusion lists, appended to the new block, can now
contain hashes of transactions, and not the transactions themselves, thus reducing the
size of the block. On the other hand, the protocol adds two all-to-all communication
rounds to the underlying consensus protocol.

Notice that, different to DAG-based approaches, broadcasts in this construction are
initiated by the clients, and they are performed on transaction and not block level.
Hence, we can avoid transaction duplication.

3.4 Using a gossip layer

Instead of a broadcast primitive, we can use a gossip layer to make transactions available
to all parties.

The protocol. The only difference from the previous section is that replicas do not
broadcast the transactions received from clients, but they gossip them to each other.
The inclusion lists contain again pointers to transactions. Since there are at least n− f
honest parties, and assuming the gossip layer has been instantiated correctly to allow
propagation of transactions to all replicas, the leader will eventually receive n − f in-
clusion lists, such that it has received the corresponding transactions via the gossip
layer.

Let tprop denote the average propagation time and cgos the number of replicas each
replica connects to in the gossip-layer implementation, and s the average transaction
size. As shown on Table 1, when implemented on top of a leader-based protocol, this con-
struction results in a minimum and maximum transaction delay of tprop, assuming the
leader will not remain silent. Proposal latency and proposal period remain unchanged,
while communication complexity increases by a factor of O(n · cgos · s).

Advantages and drawbacks. Compared to the broadcast based, this solution does not
require two additional rounds of communication for every transaction. Moreover, replicas
need to maintain fewer network connections, as there is no all-to-all communication.
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3.5 A protocol without writing the inclusion lists on the block

We now present a modification to the protocol in Section 3.1 which does not require the
leader to append the 2f + 1 used inclusion lists in the proposal message.

The protocol. Similar to Section 3.1 each replica sends its inclusion list to the leader.
The leader chooses n − f and creates a block with their transactions. In the proposal
message the leader includes the lists-used field, a list with the identifiers of the replicas
whose inclusion lists it used. Replicas vote for a proposal only if contains a lists-used
field of size at least 2f + 1. Additionally, a replica whose identifier is in the lists-used
field verifies whether its inclusion list is indeed in the transactions of the new block.

On Table 1 we summarize the trade-offs of this solution. Compared to the protocol
in Section 3.1, this only incurs an additional communication cost of O(n · |L|), where
|L| is the average size of inclusion lists, as each replica sends one inclusion list to the
leader.

Design choices and correctness. Note that the leader must send the proposal and con-
sider the votes from all the replicas. If it sent it only to the 2f+1 whose inclusion lists it
used, or counted the votes only from them, then a single malicious replica among these
2f + 1 would be able to harm liveness. In other words, the f replicas whose inclusion
list was not used by the leader have to vote for the proposal, without being able to
verify whether the leader actually included all the transactions from the lists-used field.
Observe that these might be honest replicas. Moreover, f votes can come from malicious
replicas, hence the leader needs only one vote from an honest replica in the lists-used
field. This means that the leader only needs to actually use one inclusion list sent by
an honest replica, when it claims to have used 2f + 1.

Censorship resistance. In this protocol the leader can ignore up to 2f inclusion lists
from honest replicas. Hence, the client needs to ensure that 2f + 1 honest replicas have
received its transaction. This can be achieved by sending it to all replicas. We comment
on Section 5 on how this translates to worse censorship resistance, compared to the rest
of the protocols in this section.

4 The Partially Ordered Dataset (POD) Construction

In this section we describe a approach based on Partially Ordered Dataset (POD)6, a
solution that allows censorship-resistant recording of arbitrary messages. POD can be
used as the base for a wide range of consensus-less applications, such as payment sys-
tems, a shared mempool layer for decentralized sequencers, auctions with non-omission
guarantees, and storing feeds for decentralized social media. By giving up on total order
we come up with a high-performant layer in terms of both throughput and latency.

POD associates transactions with timestamps. It does not guarantee full ordering, as
classical consensus mechanisms do, but instead results in a ‘fluctuating order’. That is,
honest clients may observe different timestamps for each transaction, yet the timestamps
will be within a restricted and well-defined interval.

6https://commonprefix.notion.site/Pod-4842ce5f7ccd47ff90e1b4b447519498

11

https://commonprefix.notion.site/Pod-4842ce5f7ccd47ff90e1b4b447519498


4.1 Modeling POD

We assume that time proceeds in rounds and that parties have loosely synchronized
clocks allowing them to determine the current round, and the local round counter is
used to assign timestamps to transactions.

Definition 2 (Partially Ordered Dataset (POD)). A Partially Ordered Dataset
(POD) is a finite sequence of pairs, D = {(r,T), . . . , (r′,T′)}, where r is a round and T
is a set of transactions. For an entry (r,T), notation D[r] returns T.

Definition 3 (Past-perfect round). We say that a round rperf becomes past perfect
if no new transactions can appear with recorded round rrec ≤ rperf.

Definition 4 (POD protocol). A POD protocol exposes the following methods.

– input event write(tx)
– output event write return(tx, π)
– input event read perfect()
– output event read perfect return(r, D, Π)
– input event read all()
– output event read all return(D, Π)
– identify(π, Π) → P ′ ⊂ P

Clients call write(tx) to write a transaction tx. Upon completion, the protocol outputs
write return(tx, π), where π is a record certificate. A transaction, for which an honest
client has obtained a record certificate, is called recorded. Clients call read perfect() to
read the transactions in the bulletin. Upon completion, the protocol outputs read perfect return(r,
D, Π), where r is a round, called the past perfect round, L is a set of transactions, D
is a POD, and Π is a past-perfect certificate. For each entry (r′,T) in D, we say that
transactions in T became finalized at round r′. Operation read all() is similar, but it re-
turns all transactions up to the current round without past-perfection guarantees, hence
it can return faster than read perfect(). Clients call identify(π, Π)→ P ′ ⊂ P to identify
the set P ′ of parties who vouched for the finalization of a tx, where Π is a POD and π
is the certificate returned by write return(tx, π).

A POD satisfies the following properties.

1. Liveness
Acknowledged within u: Assume an honest client calls write(tx) at round r. Then

the protocol will output write return(tx, π) by round r + u.
Included within v with accountability: Assume the protocol outputs write return(tx,

π) to an honest client at round r1, for some transaction tx. Then, if an honest
client calls read perfect() at round r2 ≥ r1 + v, one of the following holds: (1)
The protocol will output read perfect return(r, ·, Π), for some r ≤ r2, such that D
contains an entry (r′,T) with r′ ≤ r and tx ∈ T. (2) The POD D and certificates
π and Π identify a set of replicas P ′ that have misbehaved.

2. Safety
Transaction safety: Assume read perfect() returns (·, D1, ·) to an honest client

and (·, D2, ·) to another. If a transaction tx satisfies tx ∈ D1[r] and tx ∈ D2[r′],
for some r and r′, then |r− r′| < W , where W is a parameter we call temperature.

Past-perfection accountable safety: Assume read perfect() returns (r1, D1, Π1)
and (r2, D2, Π2) to two honest clients, for r2 ≥ r1 + δ. If tx ∈ D2[r], for some
round r < r1, then tx ∈ D1[r′], for some round r′ ≤ r1. Otherwise, certificates Π1

and Π2 identify a set of replicas P ′ that have misbehaved.
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Fair punishment No honest replica gets punished as a result of malicious oper-
ation. If identify(π, Π) → P ′, where π is a record certificate for transaction tx
and Π is a past-perfect certificate for a POD D, can only be created if all parties
in P ′ sign tx and D.

In Figure 1 we show an example. The timestamp of tx1 fluctuates within some
temperature, and transaction tx2 may or may not be returned by the first read operation.
Similarly, the second read operation may include any subset of tx4, tx5, but it will include
all previously written transactions. Concurrent transactions, such as tx3 and tx4, may
be observed by clients in any order. When a timestamp becomes past-perfect, honest
clients are guaranteed that no more transactions will ever be output with a timestamp
smaller than the past-perfect. This is illustrated in Figure 3, where the output of the
protocol contains a ‘finalized’ part and an evolving part.

Fig. 1: Example, POD assigning timestamps to transactions

4.2 A construction for POD

We present an overview of the construction and a sketch of the security arguments. In
Figure 2 and Figure 3 we show the write() and read perfect() operations, respectively,
in an implementation with five replicas.

Fig. 2: POD, write operation Fig. 3: POD, read operation

Writing transactions. In order to write a transaction a client sends it to all replicas.
Upon receiving a write request, a replica assigns it its local round number rloc and
returns it to the client. Upon receiving n − f write responses, a client considers the
request recorded. If R is the set with the n− f local rounds received by the client, then
the recorded round of the transaction is rrec = med(R).

13



Reading transactions. Following recent techniques from the literature [21], we allow
clients to make their own timing assumptions when reading the state for the system,
resulting in two ways to decide when a round becomes past-perfect. Clients that believe
in synchrony can use the following protocol. A client sends a read all() request to the
replicas, to which a replica responds with (r, D), where r is its local round and D contains
all the pairs (tx′, r′) it possesses. The client waits for n−f read responses. If not interested
in past-perfection guarantees (i.e., for a read all()), the client can output the returned
transactions with the median as the recorded round. Otherwise, for a read perfect(), it
does the following. First, it sets rperf to be the minimum of the received r values. Second,
it sets Tfinal to be the union of all transactions in the responses. Then the client uses
the client-gossip technique [25], hence making sure that rperf will become a past-perfect
round after δ time and that Tfinal contains all the transactions with recorded round
rrec ≤ rperf.

Client gossip. [25] When clients observe that replicas miss some transactions, they
rewrite them back to the replicas using write(). If writing takes time T , this technique
ensures the client that a round becomes past perfect after T , as all replicas will return
the rewritten transactions to subsequent read operations. In periods of synchrony we
can set T = δ.

Consensus layer. The system contains a second component, a lightweight consensus
layer, which replicas also use to agree on past-perfect rounds. The output of this com-
ponent can be seen as a prefix of the synchronous reading protocol. Clients that require
total-order safety can use the consensus component. It is lightweight in the sense that
its input and output are round numbers – specifically, it does not involve the transac-
tions themselves. An existing finality gadget, such as Casper FFG [7], can be used as
well. This consensus layer, as discussed in Sections 2.4 and 2.5, can also be used for
checkpointing and pruning the state of the system.

Light clients and optimization. The system can support light clients without additional
effort, using the provided read all() and read perfect() operations. An additional argu-
ment rmin can be used to instruct replicas to only return transactions newer that rmin.
Moreover, the replicas can be lightweight (they do not need a hard drive) if ‘secondaries’
are used (akin to DBMS secondaries). Finally, the requirement for a client to know the
addresses and to write to all replicas can be lifted by employing ‘helper nodes’ that are
responsible for writing. Observe that these nodes cannot harm safety for the client, who
still is the one that signs the transactions.

5 Economic arguments

The economic-censoring model. When reasoning about the censorship resistance of a
protocol, we work with two models. The first is the honest-malicious setting, where
honest replicas follow the protocol, and hence do not censor any transactions they have
received, and malicious replicas can behave arbitrarily. The second is the economic-
censoring model, which is the same as the honest-malicious, but replicas (both honest
and malicious) have one additional choice: for each received client transaction, they
decide whether to ignore it or not. They base this choice on economic criteria, which
we abstract in the notion of a bribery. A bribery for a transaction tx is an amount of
money greater than the reward a replica would get for including that transaction. If a
replica is bribed to censor tx, then it will censor it, and if it is not bribed, then it will
not censor it.
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Censorship resistance of the protocol in Sections 3.1–3.4. In order for the adversary to
delay the inclusion of a transaction for one epoch, it would have to bribe the leader of
that epoch and 2f replicas.

Censorship resistance of the protocol in Section 3.5 . In order for the adversary to delay
the inclusion of a transaction for one epoch, it would have to bribe the leader of that
epoch and f replicas.

6 Existing implementations

In this section we provide references to implementations of the protocols mentioned
throughout the report.

The 3-round version of HotStuff [30] (see HotStuff/DiemBFT in Table 1 and Sec-
tion 2.2) has been implemented7 in Rust, but the authors state it is not production
ready. The same protocol is available8 as part of Diem’s codebase, again in Rust. A
modular, academic implementation9 exists in Go, a prototype implementation10 as part
of the Bamboo [14] framework also exists in Go, while the academic prototype11 for the
original paper was written in C++.

The 2-round version of HotStuff [15] (see Jolteon in Table 1 and Section 2.2) has
been implemented121314 in some of the aforementioned repositories. Ditto, the 2-round
version of HotStuff with an asynchronous fallback protocol, has also been implemented15

in Rust. A prototype implementation16 of HotStuff-over-Narwhal is also available.
Regarding DAG-based protocols, Narwhal/Tusk [12], that is, the asynchronous Tusk

consensus protocol over Narwhal, is available17 in Rust. Narwhal/Bullshark, that is,
the partially-synchronous BullShark consensus protocol over Narwhal, has also been
implemented18 in Rust. A prototype implementation of Mysticeti [2] is also available19.
Mysten labs provides implementations of Narwhahl20, as well as Narwhal/Tusk and
Narwhal/Bullshark 21.

The Tendermint consensus algorithm [6], also known as CometBFT, has been im-
plemented22 in Go and in Rust23. FastPay has been implemented24 by Facebook in
Rust.

7https://github.com/asonnino/hotstuff/tree/3-chain
8https://github.com/diem/diem/tree/latest/consensus
9https://github.com/relab/hotstuff/tree/master/consensus/chainedhotstuff

10https://github.com/gitferry/bamboo/tree/master/hotstuff
11https://github.com/hot-stuff/libhotstuff
12https://github.com/asonnino/hotstuff/
13https://github.com/relab/hotstuff/tree/master/consensus/fasthotstuff
14https://github.com/gitferry/bamboo/tree/master/fasthostuff
15https://github.com/danielxiangzl/Ditto
16https://github.com/facebookresearch/narwhal/tree/narwhal-hs
17https://github.com/asonnino/narwhal
18https://github.com/asonnino/narwhal/tree/bullshark
19https://github.com/MystenLabs/mysticeti
20https://github.com/MystenLabs/sui/tree/main/narwhal
21https://github.com/MystenLabs/narwhal
22https://github.com/cometbft/cometbft
23https://github.com/informalsystems/tendermint-rs
24https://github.com/novifinancial/fastpay
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7 Conclusion and recommendations

In this report we evaluate existing leader-based protocols (Section 2.2) and propose
censorship-resistance solutions that can be implemented on top of them (Section 3). We
also explore existing parallel-leader (Section 2.3) and DAG-based (Section 2.4) protocols,
that achieve censorship resistance by construction. Yet, the parallel-leader protocols pay
the price of transaction duplication, are not efficient, and feature no production imple-
mentation. The DAG-based protocols, albeit reaching comparatively high throughput,
they still suffer from high latency. This is the reason why in production they have been
combined with consensusless protocols [4], resulting in sub-second latency. We review
consensusless protocol in Section 2.5.

For the requirements of Flashbots, there exist several options.

Leader-based. A leader-based protocol with a censorship-resistance add-on component
(Section 3) would achieve the desired definition of short-term censorship resistance. The
constructions in Sections 3.2–3.5 avoid transaction duplication. The one in Section 3.5
does not require additional communication rounds. As shown in Section 5, the construc-
tions in Sections 3.1–3.4 achieve, in a rational setting, better censorship resistance. Of
advantage here is the existence of production implementations, in particular of Tender-
mint, but also of HotStuff. The drawback with this approach is the low throughput and
high – for the requirements of Flashbots – latency of single-leader protocols, as well as
the performance deterioration in presence of crash faults.

DAG-based. DAG-based protocols also achieve short-term censorship resistance, but
with duplicate (specifically, up to 2f +1 copies) transactions in the output of the proto-
col. An option would be to develop (or build on existing codebases of) or Narwhal/Bull-
Shark [23], aiming for latency in the order of 2 seconds, or Mysticeti [2], aiming for sub-
second latency. We observe, however, that, after removing duplicate transactions, the
throughput of DAG-based protocols is not expected to differ much from single-leader
protocols.

Broadcast-based POD construction. Consensus-based protocols, either leader-based, with
multiple leaders, or DAG-based, are not fast enough for the requirements of Flashbots.
We believe that a solution sufficient for the requirements of Flashbots must be based
on a consensusless protocol. For these reasons we have proposed POD in Section 4, and
we provide in Section 8 the implementation path we are planning to follow for POD. As
we reason in Section 2.4, systems based solely on consensusless primitives cannot offer
attributes such as checkpointing. For this reason we have explored how we can combine
POD with a lightweight consensus layer, or with an existing consensus network, in order
to enable the complete functionality.

8 Implementation plan for POD

We now provide details for an MVP implementation, leaving some parts as future work.

Stage 1: MVP with POD core functionality

– This includes the write() and synchronous read perfect() protocols that we have pre-
sented.
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– The resulting protocol satisfies the liveness and safety properties as presented in Sec-
tion 4.1, that is, the Past-perfection safety property holds assuming synchrony.
Specifically, some client c2, performing a read perfect() after client c1, may observe a
transaction that c1 has not observed, if the two reads are too close to each other.

– Accountability-related properties are not satisfied.
– We do not need to implement an execution engine or heavy machinery, like Cosmos

SDK does, as we are building a lazy ledger.
– The implementation can be based on the FastPay or Google’s Certificate Trans-

parency code-base. Certificate Transparency, in particular, offers built-in account-
ability, which our implementation could benefit from in the next steps.

Stage 2: POD Core + consensus layer

The consensus layer can be used by clients who wish to read perfect() who wish to
obtain total-order guarantees. Additionally, the consensus layer will allow the system
to use checkpoints and safely prune old transactions.

Stage 3: POD Core + consensus layer + fee mechanism

Additionally, this will enable incentivizing, slashing, complaining, and hence account-
ability. The fee and slashing logic can also be implemented on an existing platform, such
as a smart contract on Ethereum, without a consensus layer over POD.
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