
Mysten Fastcrypto Pedersen
DKG and tBLS Audit

Shresth Agrawal1,2 Pyrros Chaidos1,3
Bernardo David1,4

1 Common Prefix
2 Technical University of Munich

3 University of Athens
4 IT University of Copenhagen

Dec 10, 2023
Last update: May 14, 2024

1 Overview

1.1 Introduction

Mysten Labs commissioned Common Prefix to audit the Pedersen DKG
and tBLS implementations within their fastcrypto library. The primary
objectives of the audit were to assess security, adherence to the relevant
publications, performance optimizations, and code quality. fastcrypto is a
Rust-based library that implements selected cryptographic primitives and
also serves as a wrapper for several chosen cryptography crates, ensuring
optimal performance and security for Mysten Labs’ software solutions,
including their blockchain network, Sui.

A Distributed Key Generation (DKG) protocol enables a set of users
to cooperatively create a cryptographic key. In the case of the Pedersen
DKG [Ped91] scheme, the resulting key is unpredictable as long as even
a single contributor is honest. At the same time, the scheme distributes
“shares” of the secret key across all users, so that only a large enough
coalition is able to recover it. The corresponding public key on the other
hand can be calculated with only public data. In this application, this
key pair is used to implement a threshold version [Bol02] of the Boneh–
Lynn–Shacham (BLS) signature scheme [BLS01]. This enables any set of
users to produce a local signature using their share of the secret. A large
enough set of local signatures can be used to compute a signature that
verifies against the combined public key, without revealing the secret key.

The scope of this audit was limited to the fastcrypto implementa-
tion and did not extend to the library’s dependencies or any downstream
applications.

https://github.com/MystenLabs/fastcrypto

1.2 Audited Files

Audit start commit: [ea66012]
Latest audited commit: [4e43631]

1. fastcrypto-tbls/src/dkg.rs
2. fastcrypto-tbls/src/dl_verification.rs (except verify_triplets, verify_deg_t_poly

and verify_equal_exponents)
3. fastcrypto-tbls/src/ecies.rs
4. fastcrypto-tbls/src/nizk.rs
5. fastcrypto-tbls/src/nodes.rs
6. fastcrypto-tbls/src/polynomial.rs
7. fastcrypto-tbls/src/random_oracle.rs
8. fastcrypto-tbls/src/tbls.rs
9. fastcrypto-tbls/src/types.rs

Supporting documentation:

1. Pedersen_s_DKG_for_tBLS.pdf
(SHA-256: b5c64f7124a74da548ef5c35ec2b024e3f18105945ca50f55433a13e8ad37c46)
referred to as the specification document in the rest of the audit re-
port.

1.3 Disclaimer

This audit does not give any warranties on the bug-free status of the given
code, i.e., the evaluation result does not guarantee the nonexistence of
any further findings of security issues. This audit report is intended to be
used for discussion purposes only. We always recommend proceeding with
several independent audits and a public bug bounty program to ensure
the security of the project.

The scope of the audit was constrained exclusively to the Fastcrypto
wrapper code, with no examination conducted on its associated depen-
dencies. Furthermore, the audit does not encompass any reference string
generation functionality in terms of code or execution.

1.4 Executive Summary

The code implements Pedersen’s DKG and tBLS protocol, employing
high-quality cryptographic primitives and prioritizing performance opti-
mizations. Overall, the implementation is of very high quality and follows
Rust’s best practices.

2

https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/
https://github.com/MystenLabs/fastcrypto/tree/4e43631
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dl_verification.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/ecies.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nizk.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nodes.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/polynomial.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/random_oracle.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/tbls.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/types.rs

Pedersen’s DKG is a multi-phase protocol requiring interaction with
a totally ordered broadcast channel at each phase. The codebase is orga-
nized with each protocol phase encapsulated in a distinct function. The
codebase has broad comments on the usage of these functions and the
requirements assumed for the high-level protocol which integrates the
implementation. Despite the specification explicitly mentioning the use
of blockchains as the broadcast channel, the codebase lacks implemen-
tation or documentation on blockchain integration or interaction with
the broadcast channel. This omission places significant dependency on
the higher-level protocol to manage these interactions correctly for secure
usage of the protocol.

The audit revealed certain assumptions about the usage of the im-
plementation that were not clearly documented, potentially leading to
protocol misexecution or susceptibility to denial-of-service attacks.

Another overarching concern is that many values are instantiated ex-
ternally, which may lead to unsafe use. Similarly, several internal values
may overflow if the setting involves a (significantly) higher number of
stake and/or participants.

We propose using random oracle calls for randomness calculations (to
ensure consistency across nodes) and to increase the length of random-
izers. Finally, we recommend potential optimizations, minor refactoring,
and highlight areas that need further documentation.

1.5 Findings Severity Breakdown
The findings are classified under the following severity categories accord-
ing to the impact and the likelihood of an attack.

Level Description
High Logical errors or implementation bugs that are easily

exploited. In the case of contracts, such issues can lead
to any kind of loss of funds.

Medium Issues that may break the intended logic, are devia-
tions from the specification, or can lead to DoS at-
tacks.

Low Issues harder to exploit (exploitable with low proba-
bility), can lead to poor performance, clumsy logic, or
seriously error-prone implementation.

Informational Advisory comments and recommendations that could
help make the codebase clearer, more readable, and
easier to maintain.

3

2 Findings

2.1 High

None Found.

2.2 Medium

M01: Non unique messages can cause DOS attack in process_message.
Affected Code: fastcrypto-tbls/src/dkg.rs (line 306)
Summary: The process_message function is implemented such that the

processing of multiple messages can be completely parallelized with-
out relying on other messages that have been processed. This leads to
a potential DOS attack where a single malicious party can send mul-
tiple messages, which will all be processed without checking for the
uniqueness of the sender. In fact, the current implementation allows
for this attack to be performed by a malicious party with zero weight.

Suggestion:
• Add additional pre-processing step that checks for the uniqueness
of the sender or add additional assumption on the higher-level
protocol to perform this check.

• Reject messages from parties with zero weight in process_message.
Status: Resolved [f658d44c]

M02: Async computation combined with merge and process_confirmations
can lead to incorrect protocol execution.
Affected Code: fastcrypto-tbls/src/dkg.rs (lines 401,463)
Summary: It is unclear when the merge and process_confirmations mes-

sage should be called by the higher-level protocol. On the protocol
level, both of these functions should be called by all the parties ex-
actly at the same first message when messages with sufficient weight
have been accumulated. This has to be implemented carefully by the
higher level protocol, specifically if the previous step has async compu-
tation (e.g., multiple process_message being executed asynchronously
before merge). This could lead to race conditions where the messages
that join the final set differ for different parties.

Suggestion: Add the above assumption of the higher-level protocol to
the comments.

Status: Resolved [f658d44c]

4

https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs#L306
https://github.com/MystenLabs/fastcrypto/commit/f658d44ca06b7d478aebd0dd7bd67c0cb00f4881
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs#L401
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs#L463
https://github.com/MystenLabs/fastcrypto/commit/f658d44ca06b7d478aebd0dd7bd67c0cb00f4881

M03: Check for minimal_threshold is lax.
Affected Code: fastcrypto-tbls/src/dkg.rs (line L471)
Summary: The check that minimal_threshold is at least t does not guar-

antee that signers will be able to form a quorum. The adversary can
fill the first t slots, and then allow a single honest party with good
shares. If we assume all other honest parties have bad shares, the
adversary can always break liveness.

Suggestion: As the specification mentions, the threshold should be set
to t+f.

Status: Resolved [f658d44c]

2.3 Low

L01: Unsafe typecasting from usize to u32.
Affected Code:

• fastcrypto-tbls/src/polynomial.rs (line 36)
• fastcrypto-tbls/src/dl_verification.rs (lines 53,82,115)

Summary: usize to u32 type conversions might be unsafe if the code
runs on a 64-bit machine. Max u32 is not an astronomical number
and can be overflowed when indexing a large number of items, even
with each item taking up multiple bytes.

Suggestion: Either enforce that the maximum number of items in the
array cannot be greater than u32::MAX or do not perform the type
conversion.

Status: Resolved [3e7b3d88, f658d44c]

L02: Modification of magical constants can lead to overflow.
Affected Code: fastcrypto-tbls/src/nodes.rs (line L154)
Summary: The types are tightly tied to the magical constants in the

code: 1000, which is used as an upper limit for the number of nodes,
and 40, which is the upper bound for the reduction divisor. The sum
in the reduce function is of type u16 (maximum 65535). Based on the
above constants and the code, the sum can be a maximum of 39000
(1000 users, with each, having the maximum possible remainder mod
40). This is safe, but if either of the above-mentioned constants is
increased by 1.6x, the sum variable will overflow.

Suggestion: Define both the constants with type u16 and the sum vari-
able with type u32. The types will enforce that any value of the con-
stant will not overflow the sum.

Status: Resolved [3e7b3d88]

5

https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs#LL471
https://github.com/MystenLabs/fastcrypto/commit/f658d44ca06b7d478aebd0dd7bd67c0cb00f4881
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/polynomial.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/polynomial.rs#L36
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dl_verification.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dl_verification.rs#L53
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dl_verification.rs#L82
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dl_verification.rs#L115
https://github.com/MystenLabs/fastcrypto/commit/3e7b3d8830b415cb5753d7fe4d7f20ab13f3f2b8
https://github.com/MystenLabs/fastcrypto/commit/f658d44ca06b7d478aebd0dd7bd67c0cb00f4881
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nodes.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nodes.rs#LL154
https://github.com/MystenLabs/fastcrypto/commit/3e7b3d8830b415cb5753d7fe4d7f20ab13f3f2b8

L03: Type mismatch for t variable.
Affected Code: fastcrypto-tbls/src/nodes.rs (line 151)
Summary: The t parameter in the reduce function should be of type

u32. It should be of the same type as the total_weight. Also, in Party
struct, t is a u32.

Suggestion: Use the same type for t as total_weight consistently.
Status: Resolved [3e7b3d88]

L04: Inefficient iteration in share_ids_of.
Affected Code: fastcrypto-tbls/src/nodes.rs (line 124)
Summary: The share_ids_of function currently brute forces over all the

potential share IDs and filters that of the given party ID. This op-
eration requires O(total_weight * log(nodes)). This function is called
over all the nodes in the create_message function.

Suggestion: As all the shares of the node are sequential, a cleaner ap-
proach would be to find the index of party ID in the nodes_with_nonzero_weight
and then use that to get the range of share IDs from the accumulated_weights.
This would be significantly cheaper as the complexity doesn’t scale
with the total_weight.

Status: Acknowledged

L05: Non-deterministic randomizers used for checks.
Affected Code: fastcrypto-tbls/src/dl_verification.rs (line 44)
Summary: As is, get_random_scalars may theoretically produce values

that fail on one system but pass on others.
Suggestion: verify_poly_evals should use the Fiat-Shamir heuristics to

make the function deterministically checkable. We recommend hash-
ing the entire set of evals, polynomial and a separate index for each
output, and appropriate domain separator strings.

Status: Acknowledged

L06: Short Scalar randomizers produced from u64s.
Affected Code: fastcrypto-tbls/src/dl_verification.rs (line 185)
Summary: In the current version, the randomizers are produce by up-

casting 64-bit integers into scalars. The (relatively) small size of the
resulting Scalars may provide insufficient soundness guarantees, as
Schwartz–Zippel lemma allows for a failure probability of ·2−64. We
note that the upcasting is safe to do in terms of bias (if the intention
is to produce 64-bit randomizers).

6

https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nodes.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nodes.rs#L151
https://github.com/MystenLabs/fastcrypto/commit/3e7b3d8830b415cb5753d7fe4d7f20ab13f3f2b8
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nodes.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nodes.rs#L124
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dl_verification.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dl_verification.rs#L44
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dl_verification.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dl_verification.rs#L185

Suggestion: Increase size of rands to ca. 128 bits, to obtain a corre-
sponding reduction to the soundness error. Alternatively, get_random_scalars
could use the rand trait of Scalar to generate a random scalar instead
of manually deserializing a random u64. Ideally, both options should
be implemented via RO invocations.

Status: Acknowledged

L07: Non-Standard use of ElGamal CTR Mode.
Affected Code: fastcrypto-tbls/src/ecies.rs (line 126)
Summary: The protocol uses AES CTR Mode in a non-standard way

(with fixed zero IV). Current usage ensures that each ElGamal/DH
ephemeral key is only used once, so there is no AES key+IV reuse.
However, the resulting code may be fragile (e.g., if communications
over different shares are not properly batched as they are now). Addi-
tionally, the protocol specification should mention using AES in place
of the RO construction for ElGamal.

Suggestion: Document that the AES code should not be re-used in other
contexts. Alternatively, implement a standard CTR mode implemen-
tation (with a non-fixed IV) and appropriate checks to ensure decryp-
tion does not fail due to insufficient ciphertext bytes.

Status: Acknowledged

2.4 Informational

I01: Lagrange coefficients can be calculated without evaluation
results.
Affected Code: fastcrypto-tbls/src/polynomials.rs (line 95)
Summary: get_lagrange_coefficients_for_c0 doesn’t need the complete

eval object. The indexes of the evaluations should be sufficient to
calculate the coefficients.

Suggestion: It might be worth to alter the interface so that the coeffi-
cients can be computed and/or cached based on indexes (without the
corresponding evaluations).

Status: Acknowledged

I02: Possible speedup for Lagrange coefficient calculations.
Affected Code: fastcrypto-tbls/src/polynomials.rs (line 143)

7

https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/ecies.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/ecies.rs#L126
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/polynomials.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/polynomials.rs#L95
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/polynomials.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/polynomials.rs#L143

Summary: Instead of dividing immediately, the get_lagrange_coefficients_for_c0
can return the common numerator, and then, inside recover_c0, the
numerator can be multiplied to produce the final result. This saves t
scalar multiplications.

Status: Acknowledged

I03: total_weight can be removed from Nodes struct.
Affected Code: fastcrypto-tbls/src/nodes.rs (line 26)
Summary: It is not required to store and maintain the total_weight in

the Nodes struct as the total_weight will always be equal to the last
entry of the accumulated_weight.

Suggestion: The total_weight getter function can be augmented to re-
turn the last entry of accumulated_weight.

Status: Acknowledged

I04: Name reuse w.r.t. total_weight.
Affected Code:

• fastcrypto-tbls/src/nodes.rs (line 50)
• fastcrypto-tbls/src/dkg.rs (lines 408,481)

Summary: The name total_weight is used more than twice in different
contexts. Initially it is used inside nodes.rs to represent the sum of
all weights in the protocol. In dks.rs it is used in L408 to refer to the
weight of the first message set (I1), and later in L481 to refer to the
size of the second message set (I2).

Suggestion: Use more specific names for the variables in dks.rs, e.g.
phase_1_weight, phase_2_weight.

Status: Acknowledged

I05: Potential speedup in reduce.
Affected Code: fastcrypto-tbls/src/nodes.rs (line 150)
Summary: The for loop can be reversed, and a break statement can be

used when the if statement is entered for the first time. For all cases
where a reduction is possible, we will break earlier and not iterate
over the initial factors.

Status: This optimization cannot be applied due to the later changes in
the codebase.

8

https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nodes.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nodes.rs#L26
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nodes.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nodes.rs#L50
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs#L408
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs#L481
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nodes.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nodes.rs#L150

I06: Potential speedup in Partial_sign_batch.
Affected Code: fastcrypto-tbls/src/tbls.rs (line 39)
Summary: Partial_sign_batch can perform precomputation with regards

to h to improve performance. Since the same h value is used for each
share we sign for, we can afford to use large amounts of precomputa-
tion.

Suggestion: Signing with precomputation can be based on the existing
fastcrypto multiplier/windowed.rs codebase. Alternatively, BLST also
supports setting a window manually via blst_[p1/p2]s_mult_wbits_precompute

Status: Acknowledged

I07: Potential Consolidation in NIZK code.
Affected Code: fastcrypto-tbls/src/nizk.rs (lines 17,112)
Summary: The structure of the Schnorr and generalized Pedersen pro-

tocols is very similar.
Suggestion: Consider consolidating NIZK code so that Pedersen and

Schnorr proofs share the same code, which would accept a vector of
inputs (with length=1 for Schnorr and length=2+ for Perdersen and
variants).

Status: Acknowledged

I08: Potential speedup on Fiat Shamir verification.
Affected Code: fastcrypto-tbls/src/nizk.rs (line 186)
Summary: The final check for the NIZK can be sped up by refactoring

to one side and using multi-multiplication.
Suggestion: Currently we check:

1

2 let left = *e1 + *e2 * c;
3 let right = *e3 * z;
4 left == right

Instead, we can rewrite this as
1

2 let left = *e1 ;
3 let right = *e3 * z + *e2 * (-c);
4 left == right

And calculate right via multi-multiplication.
Status: Acknowledged

9

https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/tbls.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/tbls.rs#L39
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nizk.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nizk.rs#L17
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nizk.rs#L112
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nizk.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/nizk.rs#L186

I09: Unnecessary cloning of the partials iterator.
Affected Code: fastcrypto-tbls/src/tbls.rs (line 94)
Summary: The aggregate function performs unnecessary cloning of the

partials iterator. The unique_by combinator creates a hashmap inter-
nally to perform the uniqueness check, and cloning leads to the work
being performed twice.

Suggestion: Here is a cleaner way to do this:
1 let unique_partials = partials
2 .unique_by(|p| p.borrow().index)
3 .take(threshold as usize)
4 .collect_vec();
5 if unique_partials.len() != threshold as usize {
6 return Err(FastCryptoError::NotEnoughInputs);
7 }

Status: Acknowledged

I-10: Speed up in polynomial evaluations for share generation.
Affected Code: fastcrypto-tbls/src/polynomials.rs (line 68)
Summary: Currently, polynomial evaluations are calculated indepen-

dently. Given that a common use case is to evaluate a polynomial
on points 1 . . . k, where k is larger than the degree of the polynomial,
using the fixed differences method may be more efficient. To imple-
ment the method, the first degree number of evaluations are performed
normally using the Horne’s method. Then, a preprocessing step takes
place to calculate a vector of derivatives of size degree. Using that vec-
tor, the value of subsequent evaluations can be calculated using only
additions

Suggestion: Below is a pseudocode illustrating the method.
1 #degree+1 values total, skipping 0
2 for d in range(1,degree+2):
3 p[d]=polyeval(d)
4

5 #initial preprocessing
6 A=[p[i+1]-p[i] for i in range(1,degree+1)]
7

8 #preprocessing in place
9 for j in range(degree-1,0,-1):

10 for i in range(j):
11 A[i]=A[i+1]-A[i]
12

13

14

10

https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/tbls.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/tbls.rs#L94
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/polynomials.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/polynomials.rs#L68

15 # update step
16 def update(A):
17 for j in range(len(A)-1):
18 A[j+1]+=A[j]
19

20 # remaining evaluations
21 for d in range(degree+2,degree+1+k):
22 update(A)
23 p[d]=p[d-1]+A[-1]

Status: Acknowledged

I11: Potential DOS attack due to unconstrained vectors.
Affected Code: fastcrypto-tbls/src/dkg.rs (lines 67,135)
Summary: The structs Message and Confirmation represent protocol mes-

sages which are transferred between parties over the broadcast chan-
nel. These structs contain variable-size vectors. The items of these
vectors are processed by the receiving party without any checks on
the total size of the vectors. This can enable an adversary to craft
large protocol messages that might lead to a denial of service attack
to the receiver. This attack becomes infeasible if blockchains are used
as the broadcast channel due to the cost of posting large messages
and the limit on the maximum block size.

Suggestion: Implement a custom deserialization for the structs that
constraints the size of the vectors.

Status: Pending

2.5 Model Limitations and concerns on Application
integration.

In this section we note a number of limitations that are inherent in the
design implemented, or possibilities for inadvertent mis-use of internal
functions. While we do not believe the issues to be exploitable in the
currently intended application, we suggest that they be considered in the
documentation and specification of the codebase.

First, subsequent works [GJKR07], have identified issues with the Ped-
ersen DKG scheme [Ped91] with regard to the distribution of the resulting
public key. Specifically, an adversary, in control of at least 2 identities can
“trap” their own contributions in an undetectable way, by issuing faulty
shares from one adversarial identity to the other. The adversary can now
choose whether to reveal this discrepancy (disqualifying the correspond-
ing contribution) or keep it secret (in which case the contribution is valid).

11

https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs#L67
https://github.com/MystenLabs/fastcrypto/blob/ea66012b860d9dd152abb7f2156275698ee91126/fastcrypto-tbls/src/dkg.rs#L135

Thus, the adversary can preemptively calculate the resulting public key
with and without the contribution and choose the more beneficial one. In
fact, the adversary can choose whether or not to sabotage each of their
contributions. Thus, if the adversary controls x parties, they can choose
amongst 2x public keys. This limitation is only relevant if the value of the
public key is used in applications beyond signature verification (e.g. as a
randomness seed). As such, it does not influence the results of this audit.

Second, we note that the higher-level protocol shouldn’t predicate
uptime rankings, rewards, or similar metrics based on participation in
signing w.r.t. the final aggregate key. This is because the adversary can
force an honest user out of the final set of participants by sending them
bad shares and delaying their complaint until enough parties have replied
for Phase 3 to end. If we wish to increase participation in signing, we
might want to extend Phase 3 to allow for complaints from all users.

Additionally, the current protocol allows for situations where the de-
rived keys rely on only 1 honest party (e.g., f out of f + 1 members of
I1 are corrupted). While this is theoretically fine in the static corruption
model, in a real-world situation where this 1 honest party is later cor-
rupted, the secret key would be exposed to the adversary. For example,
this could happen if this party no longer has an economic incentive to
behave honestly and/or protect its protocol randomness and transcript.

Finally, The weight reduction is not specified outside of the code. The
property seems to be that if there exists 2f+δ+1 weight out of 3f+δ+1 in
the hands of honest users before compression, then (1) after compression
with d, honest users will hold at least roundup ((2f+1)/d) and dishonest
ones will hold at most rounddown(f/d).

As a trivial example, suppose we have 5 honest participants each with
20 stake, and 1 adversarial with 40. Also suppose we allow a δ of 5. A
single application of reduce with that δ is safe (as 100-5 = 95 is greater
than 2*40+1). The resulting shares are then 5 honest users with 1 share
and 1 dishonest with 2. Reducing again, will allow a reduction with 2 as
the lost shares are “only” 5 which is allowable.

In general, repeated applications of reduce should not be possible.
First, as delta is expressed as an absolute value, its real measure in terms
of initial stake is multiplied by the previous reduction scalar (in the above,
the delta of 5 in the second round, actually allows for 100 initial stake to
be destroyed). Even with delta expressed as a percentage (e.g. 3%), the
(worst case) loss is incremented with each round.

Fortunately, even repeated applications do not break safety: if the
adversary does not hold t shares at the start, he will not hold t (reduced)

12

shares at the end. This is due to the shares being rounded down when
divided, whereas the threshold value t is rounded up. In the above, a value
of t = 85 would reduce to 3 in the first instance and to 2 in the second.

13

References

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. In International conference on the theory and application of
cryptology and information security, pages 514–532. Springer, 2001.

Bol02. Alexandra Boldyreva. Threshold signatures, multisignatures and blind sig-
natures based on the gap-diffie-hellman-group signature scheme. In Interna-
tional Workshop on Public Key Cryptography, pages 31–46. Springer, 2002.

GJKR07. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology, 20:51–83, 2007.

Ped91. Torben Pryds Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO 91 - Annual international cryptology
conference, pages 129–140. Springer, 1991.

14

About Common Prefix

Common Prefix is a blockchain research, development, and consulting
company consisting of a small number of scientists and engineers spe-
cializing in many aspects of blockchain science. We work with industry
partners who are looking to advance the state-of-the-art in our field to
help them analyze and design simple but rigorous protocols from first
principles, with provable security in mind.

Our consulting and audits pertain to theoretical cryptographic proto-
col analyses as well as the pragmatic auditing of implementations in both
core consensus technologies and application layer smart contracts.

15

	 Mysten Fastcrypto Pedersen DKG and tBLS Audit
	References

