
Snowfork

Beefy client audit

May 29, 2023

Common Prefix



2

Overview
Introduction
Common Prefix was commissioned to perform a security audit on Snowfork’s Beefy Client

smart contracts, at commit hash 54b62c92445635164d1414af742e26b56a097003. The files

inspected are the following:

BeefyClient.sol

Bitfield.sol

Description of the protocol

Snowfork is a general-purpose bridge between Polkadot and Ethereum. BEEFY is a light client
which allows the bridge to prove on the Ethereum side that a specified parachain header (i.e.
blocks on the Polkadot’s side of the bridge) has been finalized by the relay chain. An untrusted
and permissionless set of relayers regularly transmits commitments signed by relay chain
validators. The light client has to verify the signatures before accepting the commitment. The
light client achieves an efficient verification by only verifying the signatures for a really small,
randomly chosen subset of validators. The commitment contains the number of the finalized
block, a unique ID specifying the set of validators who signed the given commitment and a
payload (the actual data to be verified). The payload contains an MMR root hash which commits
to the Polkadot history.

Each relayer has to sequentially execute the following steps.

1. Submit the hash of the commitment and a bitfield specifying the validators that,

according to the relayer’s claim, signed the commitment.

2. After a sufficient number of blocks, to ensure that the randomness from RANDAO is not

easily manipulated, the relayer has to commit to a block.prevrandao, which will play

the role of the seed for future random sampling. (Of course, it cannot be guaranteed that

the output of the RANDAO is not biased. In this audit we do not investigate the possibility

of bad/biased randomness which, of course, would be catastrophic for the protocol).

3. Submits the whole commitment and the contract subsamples the validator set using the

seed of the previous step, and verifies the signatures of this subset.

https://github.com/Snowfork/snowbridge/tree/54b62c92445635164d1414af742e26b56a097003/core/packages/contracts/src


3

Since the set of validators of the relay chain regularly changes, the relayers of the Beefy

contract should also submit the data about the new commit accompanied by proofs of their

validity.

In the current codebase version, there is a critical issue (the Merkle tree indices are not verified).
The issue was already known to the team, before the audit, and there is also a comment in the
BeefyClient.sol contract describing the issue. The team has a concrete plan for fixing the1

issue (will use an older Merkle proof verifier, that indeed did verify the indices).

Disclaimer

Note that this audit does not give any warranties on the bug-free status of the given smart

contracts, i.e. the evaluation result does not guarantee the nonexistence of any further findings

of security issues. This audit report is intended to be used for discussion purposes only.

Functional correctness should not rely on human inspection but be verified through thorough

testing. We always recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of the project.

Findings Severity Breakdown
The findings are classified under the following severity categories according to the impact and

the likelihood of an attack.

Level Description

Critical Logical errors or implementation bugs that are easily exploited and may
lead to any kind of loss of funds

High Logical errors or implementation bugs that are likely to be exploited and
may have disadvantageous economic impact or contract failure

Medium Issues that may break the intended contract logic or lead to DoS attacks

1

https://github.com/Snowfork/snowbridge/blob/54b62c92445635164d1414af742e26b56a097003/core/p
ackages/contracts/src/BeefyClient.sol#L488

https://github.com/Snowfork/snowbridge/blob/54b62c92445635164d1414af742e26b56a097003/core/packages/contracts/src/BeefyClient.sol#L488
https://github.com/Snowfork/snowbridge/blob/54b62c92445635164d1414af742e26b56a097003/core/packages/contracts/src/BeefyClient.sol#L488


4

Low Issues harder to exploit (exploitable with low probability), issues that
lead to poor contract performance, clumsy logic or seriously error-prone

implementation

Informational Advisory comments and recommendations that could help make the
codebase clearer, more readable and easier to maintain



5

Findings
Critical
No critical issues found.2

High
No high issues found.

Medium
MEDIUM-1 A relayer can call submitInitialWithHandover instead of

submitInitial to submit a commitment signed by the current
validator set to get a lower required number of signatures

Contract(s) BeefyClient.sol

Status Open

Description

Any commitment should be signed by at least ⅔ of the validator set. This condition is verified

only in the initial submission (submitInitial or submitInitialWithHandover). Note that at

the first step, nothing prevents the relayer from calling submitInitial even if his commitment

is signed by the next validator set (or submitInitialWithHandover if his commitment is

signed by the current set).

Suppose that the relayer has a commitment signed by n validators of the current set (let’s call

the number of validators in the current set m1) and that the number of validators in the next set

(let’s call it m2) is less than m1. If ⅔*m2 < n < ⅔*m1 then this commitment is not valid. But if

the relayer calls submitInitialWithHandover, instead of the submitInitial which he should

2 Except for the issue described in the introduction, which was already known to the team.



6

have been called, the function will be executed without problems. Then he can call

commitPrevRandao and finally submitFinal, in which it is not verified that the

bitfield.length is at least⅔ of m1.

The severity of the issue depends on the possible relative values of m1 and m2.

Recommendation

We suggest adding a check of the bitfield.length in the submitFinal and

submitFinalWithHandover functions.

MEDIUM-2 A relayer can execute the first two steps of the protocol
(submitInitial(WithHandover) and commitPrevRandao)
multiple times to get a random seed in his favor

Contract(s) BeefyClient.sol

Status Open

Description

The steps of the protocol are meant to be executed sequentially by the relayer, as follows:

submitInitial(WithHandover)->commitPrevRandao->createFinalBitfield->sub

mitFinal(WithHandover). Although, nothing prevents the relayer from re-executing the first

step (submitInitial(WithHandover)) after he has called commitPrevRandao. That way

he creates a new ticket, but for the same commitment, with a zero prevRandao variable,

therefore he is allowed to call again commitPrevRandao. A malicious relayer could repeat this

procedure as many times as he wishes, till he gets a seed in his favor as an outcome. The only

blocking action would be another relayer submitting a commitment for a more recent

blockNumber, but the protocol cannot rely for its security on this.

Recommendation

We suggest adding a check on submitInitial and submitInitialWithHandover that the

prevRandao variable of the ticket has not been set before, preventing an adversarial relayer from

executing multiple times the first two steps. Although this is just a mitigation, since a relayer can



7

use multiple addresses to submit the same commitment.

MEDIUM-3 BeefyClient::encodeCommitment does not exclude collisions and an
adversarial relayer could misuse this

Contract(s) BeefyClient.sol

Status Open

Description

The relay chain validators sign the hash of the commitment and the BeefyClient contract verifies

these signatures. The commitment includes five variables: blockNumber,

validatorSetID, payload.mmrRootHash, payload.prefix and payload.suffix.

These variables are first encoded in a single variable of type bytes:

function encodeCommitment(Commitment calldata commitment) internal pure returns (bytes
memory) {

return bytes.concat(

commitment.payload.prefix,

commitment.payload.mmrRootHash,

commitment.payload.suffix,

ScaleCodec.encodeU32(commitment.blockNumber),

ScaleCodec.encodeU64(commitment.validatorSetID)

);

}

Then the keccak256 is applied to that single variable and outputs the commitmentHash. The

problem is that payload.prefix and payload.suffix are of type bytes, i.e. of arbitrary

length, therefore for some commitments a relayer can find collisions, i.e. a different

commitment structure with the same hash. Although this new artificial commitment will

probably be of no meaningful content, it’s a good practice to avoid any kind of collision on the

protocol level.



8

Recommendation

We suggest restricting, if it is possible, the lengths of the prefix and suffix variables of the

payload structure to avoid collisions.

MEDIUM-4 A malicious commitment, if accepted, could block the client for an
arbitrarily long period

Contract(s) BeefyClient.sol

Status Open

Description

The Beefy Client only checks that the commitment is signed by (a subset of the) relay chain

validators and does not care about the content of the commitment, since this is handled by

other layers e.g. the GRANDPA finality gadget of Polkadot. However, if a number of malicious

relay chain validators sign a commitment with a huge blockNumber and the relayer manages

to get this commitment accepted (the signatures are valid therefore the only obstruction is that

these malicious validators are chosen by the Beefy Client for verification, which has a small but

not zero probability to happen) then the Beefy Client cannot accept new commitments for a long

time due to the restriction:

if (commitment.blockNumber <= latestBeefyBlock) {

revert StaleCommitment();

}

in the submitFinal and submitFinalWithHandover functions.

Recommendation

There is no easy fix to this issue without re-designing the client and its interactions with other

layers. Someone could argue that the probability of this issue is extremely small, but we suggest

adding an extra functionality that will allow the client to remove such malicious commitments to

avoid being blocked for long periods.



9

Low
No low issues found.

Informational/Suggestions

INFO-1 Not used custom error

Contract(s) BeefyClient.sol

Status Open

Description

The custom error InvalidTask() is defined but is never used in the contracts.

Recommendation

We suggest removing this custom error statement.

INFO-2 Missing conditions in subsample, createBitfield, isSet and
set functions

Contract(s) Bitfield.sol

Status Open

Description

● subsample: length should be <= prior.length*256 (this is correctly described in

the comments) and n should be <= number of set bits in prior in the (bit) range [0:length],

but these conditions are not checked in the body of the function.

● createBitfield: arrayLength*256 should be >= bitsToSet.length.

● isSet: self.length should be .

https://www.codecogs.com/eqnedit.php?latex=%5Cgeq%20index%2F2%5E8#0


10

● Set: self.length should be .

Recommendation

We suggest adding checks that the above-mentioned conditions are satisfied to make the

Bitfield library self-contained.

INFO-3 Redundant & operation in set and isSet

Contract(s) Bitfield.sol

Status Open

Description

In Bitfield::set,isSet the & operation in the following line is redundant:

uint8 within = uint8(index & 0xFF)

since the type casting of the uint256 to uint8 just returns the last 8 digits.

Recommendation

We suggest removing this extra operation.

INFO-4 Code duplication

Contract(s) BeefyClient.sol

Status Open

Description

Functions submitFinal and submitFinalWithHandover have many lines of code in

common.

https://www.codecogs.com/eqnedit.php?latex=%5Cgeq%20index%2F2%5E8#0


11

Recommendation

We suggest constructing a separate method implementing these common lines which will be

called by these two functions, to avoid code duplication and improve the readability of the code.

INFO-5 Typos in comments

Contract(s) BeefyClient.sol

Status Open

Description

In the comments above struct ValidatorProof the addr variable should be renamed

account.

In the comments above struct Ticket: sender should be renamed account, bitfield

should be renamed bitfieldHash and a description of the prevRandao variable is missing.

In the comment above randaoCommitDelay we read that this variable should be set to

MAX_SEED_LOOKAHEAD, but MAX_SEED_LOOKAHEAD counts epochs and

randaoCommitDelay counts blocks i.e. 32*epochs.

The comments above submitFinalWithHandover are not complete and explanations for

several arguments of the function are missing.

Recommendation

We suggest correcting the typos and providing the missing definitions to improve readability.

INFO-6 submitInitial and submitInitialWithHandover are declared
payable with no apparent reason

Contract(s) BeefyClient.sol



12

Status Open

Description

The functions submitInitial and submitInitialWithHandover are declared payable,

although it is not described in the comments or in the provided documentation that the relayer

should pay ETH to submit a commitment in the light client, therefore we see no apparent reason

to declare these functions payable.

INFO-7 Implicit type cast

Contract(s) BeefyClient.sol

Status Open

Description

commitment.blockNumber is of type uint32 and latestBeefyBlock is uint64 although

they are used to store similar things and moreover, the value of commitment.blockNumber is

stored in latestBeefyBlock in submitFinal and submitFinalWithHandover.

The argument of minimumSignatureThreshold should be of type uint256 although this

function is called only once with a uint128 as argument.

Recommendation

We suggest using the same types for consistency as a good practice, although the compiler will

automatically type cast them and the above-mentioned cases will not cause any problems.

INFO-8 The signatures should be in the appropriate/non malleable format
otherwise the open zeppelin function recover will revert

Contract(s) BeefyClient.sol

Status Open

Description



13

There is the known ECDSA signature vulnerability i.e. if (r,s) is a valid signature, (r, n-s) is also

valid (n is the order of the elliptic curve group). The BeefyClient contract does not use the

ecrecover function, which is vulnerable to this problem, but the recover function of the ECDSA

library of open zeppelin. This function avoids the vulnerability by requiring the s value to be in the

lower half of the order and returning an error message otherwise . Therefore the proofs of the3

(v,r,s) variables of the ValidatorSet structure should be in the appropriate format.

INFO-9 Minor optimization in doSubmitInitial

Contract(s) BeefyClient.sol

Status Open

Description

The exact number of set validators in the bitfield is not needed. What is actually needed is that

they are more than⅔ of the validators’ set. Therefore instead of calling the

Bitfield.countSetBits function, another similar function could be built which will count

the set bits in the bitfield till they exceed a given threshold and not all of them.

3

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/5420879d9b834a0579423d668fb60c5fc
13b60cc/contracts/utils/cryptography/ECDSA.sol#L125

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/5420879d9b834a0579423d668fb60c5fc13b60cc/contracts/utils/cryptography/ECDSA.sol#L125
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/5420879d9b834a0579423d668fb60c5fc13b60cc/contracts/utils/cryptography/ECDSA.sol#L125


14

About Common Prefix
Common Prefix is a blockchain research, development, and consulting company consisting of a

small number of scientists and engineers specializing in many aspects of blockchain science.

We work with industry partners who are looking to advance the state-of-the-art in our field to

help them analyze and design simple but rigorous protocols from first principles, with provable

security in mind.

Our consulting and audits pertain to theoretical cryptographic protocol analyses as well as the

pragmatic auditing of implementations in both core consensus technologies and application

layer smart contracts.


